Coupled-Cluster Sum-Frequency Generation Nonlinear Susceptibilities of the Methyl (CH_3) and Methylene (CH_2) Groups

Conrard Giresse Tetsassi Feugmo, Vincent Liégeois, and Benoît Champagne*

Supplementary information

Figure SI-1 Comparison of the SFG spectra calculated at the CCSD and B3LYP (with the SuperFine integration grids) levels. NM \equiv Normal Modes (aug-cc-pVDZ), Prop \equiv Cartesian derivatives of the properties : $\partial \mu_{\alpha}/\partial r_{i\gamma}$ and $\partial \alpha_{\alpha\beta}/\partial r_{i\gamma}$ (aug-cc-pVDZ). In the hybrid results (dashed-red curves), the Cartesian derivatives of the properties calculated using the B3LYP/aug-cc-pVDZ method were projected onto the CCSD/aug-cc-pVDZ normal modes. The spectra are reported for the Free Chain model, at $\theta = 60^{\circ}$ and $\xi = 150^{\circ}$, and for *ppp* and *ssp* sets of polarizations. $\Gamma = 1 \text{ cm}^{-1}$.

Figure SI-2 Comparison of the SFG spectra calculated at the CCSD and B3LYP (with the SuperFine integration grids) levels. NM \equiv Normal Modes (cc-pVTZ), Prop \equiv Cartesian derivatives of the properties : $\partial \mu_{\alpha} / \partial r_{i\gamma}$ and $\partial \alpha_{\alpha\beta} / \partial r_{i\gamma}$ (aug-cc-pVDZ). The six spectra combine Cartesian derivatives of the properties calculated using the aug-cc-pVDZ basis set with cc-pVTZ normal modes. These spectra are reported for the Free Chain model, at $\theta = 60^{\circ}$ and $\xi = 150^{\circ}$, and for *ppp* and *ssp* sets of polarizations. $\Gamma = 1 \text{ cm}^{-1}$.

Table SI-1 Romberg's triangles for the dipole moment and the polarizability derivatives with respect to the *x*-atomic Cartesian coordinate of H₂ (in a.u.). Calculations were performed at the B3LYP/aug-cc-pVDZ level, for seven amplitudes of geometrical distortion ($\Delta r = 0.005, 0.01, 0.02, 0.04, 0.08, 0.16, \text{ and } 0.32 \text{ Å}$). The selected "best" values are highlighted in boxes, and the analytic derivatives (at the same level of calculation) are also reported. *n* is the Romberg's iteration number. The $\partial \mu_y / \partial x_{H_2}$ values were not reported because they are zero by symmetry.

	SuperFine grid							Ult.	raFine gr	rid				
$\Delta r/n$	0	1	2	3	4	5	6	0	1	2	3	4	5	6
							$\partial \mu_x / \partial x_{\rm H_2}$							
0.005	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857
0.010	0.00857	0.00857	0.00857	0.00857	0.00857	0.00857		0.00857	0.00857	0.00857	0.00857	0.00857	0.00857	
0.020	0.00857	0.00857	0.00857	0.00857	0.00857			0.00857	0.00857	0.00857	0.00857	0.00857		
0.040	0.00857	0.00857	0.00857	0.00857				0.00857	0.00857	0.00857	0.00857			
0.080	0.00857	0.00857	0.00857					0.00857	0.00857	0.00857				
0.160	0.00859	0.00850						0.00859	0.00850					
0.320 Analytic	0.00885			0 00857				0.00885			0.00855			
Anuiyin				0.00057			du./dru				0.00855			
0.005	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219
0.010	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.07217	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	0.07217
0.010	0.09219	0.09219	0.09219	0.09219	0.09219	0.09219		0.09219	0.09219	0.09219	0.09219	0.09219	0.09219	
0.040	0.09218	0.09219	0.09219	0.09219	0.09219			0.09218	0.09219	0.09219	0.09219	0.09219		
0.080	0.09215	0.09219	0.09218					0.09215	0.09219	0.09218				
0.160	0.09203	0.09222						0.09203	0.09222					
0.320	0.09147							0.09147						
Analytic				0.09218			2 / 2				0.09218			
0.005	0.0(204	0.0(204	0.0(204	0.0(204	0.0(204	0.0(204	$\frac{\partial \mu_z}{\partial x_{H_2}}$	0.0(204	0.0(204	0.0(204	0.0(204	0.0(204	0.0(204	0.0(204
0.005	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294	0.06294
0.010	0.06295	0.06295	0.06295	0.06295	0.06295	0.06295		0.06295	0.06294	0.06294	0.06294	0.06294	0.06294	
0.020	0.06296	0.06295	0.06295	0.06295	0.06295			0.06296	0.06294	0.06294	0.06294	0.06294		
0.040	0.06301	0.06295	0.06295	0.06295				0.06300	0.06294	0.06294	0.06294			
0.160	0.06389	0.06299	0.00295					0.06389	0.06299	0.00294				
0.320	0.06658							0.06658						
Analytic				0.06295							0.06292			
							$\partial \alpha_{xx} / \partial x_{H_2}$							
0.005	-1.19380	-1.19377	-1.19377	-1.19377	-1.19377	-1.19377	-1.19377	-1.19490	-1.19487	-1.19487	-1.19487	-1.19487	-1.19487	-1.19487
0.010	-1.19390	- 1.19377	-1.19377	-1.19377	-1.19377	-1.19377		-1.19500	-1.19487	-1.19487	-1.19487	-1.19487	-1.19487	
0.020	-1.19428	-1.19377	-1.19377	-1.19377	-1.19377			-1.19538	-1.19487	-1.19487	-1.19487	-1.19487		
0.040	-1.19582	-1.19377	-1.19377	-1.19377				-1.19690	-1.19487	-1.19487	-1.19487			
0.080	-1.20199	-1.193/6	-1.19377					-1.20299	-1.19483	-1.19486				
0.100	-1.22070 -1.32605	-1.19559						-1.22743 -1.32647	-1.19445					
Analytic	1.02000		-	-1.19384				1102017			-1.19411			
							$\partial \alpha_{yy} / \partial x_{H_2}$							
0.005	-2.30948	-2.30952	-2.30952	-2.30952	-2.30952	-2.30952	-2.30952	-2.30956	-2.30959	-2.30959	-2.30959	-2.30959	-2.30959	-2.30959
0.010	-2.30938	-2.30952	-2.30952	-2.30952	-2.30952	-2.30952		-2.30945	-2.30959	-2.30959	-2.30959	-2.30959	-2.30959	
0.020	-2.30897	-2.30952	-2.30952	-2.30952	-2.30952			-2.30904	-2.30959	-2.30959	-2.30959	-2.30959		
0.040	-2.30734	-2.30951	-2.30952	-2.30952				-2.30741	-2.30958	-2.30959	-2.30959			
0.080	-2.30081	-2.30949	-2.30950					-2.30087	-2.30955	-2.30957				
0.160	-2.27479	-2.30926						-2.27484	-2.30928					
0.320 Analytic	-2.1/140		_	2 30943				-2.1/150			_2 30957			
maryne				2.30743			$\frac{\partial \alpha_m}{\partial x_H}$				2.30737			
0.005	-1.81362	-1.81363	-1.81363	-1.81363	-1.81363	-1.81363	-1.81363	-1.81537	-1.81538	-1.81538	-1.81538	-1.81538	-1.81538	-1.81538
0.010	-1.81361	-1 81363	-1 81363	-1 81363	-1 81363	-1 81363		-1.81535	-1 81537	-1 81537	-1 81537	-1 81537	-1 81537	
0.020	-1 81354	_1 81363	_1.81363	_1 81363	-1 81363	1.01505		-1 81579	_1 81537	_1 81537	_1 81537	-1 81537	1.01557	
0.040	-1.81328	-1.81363	-1.81363	-1.81363	1.01505			-1.81499	-1.81538	-1.81538	-1.81538	1.01557		
0.080	-1.81220	-1.81366	-1.81365					-1.81383	-1.81539	-1.81539				
0.160	-1.80784	-1.81386						-1.80916	-1.81539					
0.320	-1.78978			1 01000				-1.79045			1 01207			
Analytic			-	-1.81383							-1.81381			

$d^{-}(d_{1}^{-}/d_{2}^{-})^{\S}$	$d^+(d_1^+/d_2^+)^{\S}$	r_{b}^{-}	r_a^-	<i>r</i> +	
2911/2934	2889/2896	2971	2965	2902	
2922	2893	2972	2965	2902	Freq
		2971	2961	2901	-
0.000/0.000	0.006/0.208	0.205	0.000	0.075	
0.000	0.150	0.202	0.000	0.006	μ'_x
		0.188	0.000	0.008	
0.013/0.203	0.000/0.000	0.000	0.263	0.000	
0.135	0.000	0.000	0.233	0.000	μ'_{v}
		0.000	0.186	0.000	
0.000/0.000	0.029/0.104	0.019	0.000	0.225	
0.000	0.122	0.021	0.000	0.183	μ'_z
		0.031	0.000	0.185	
0.000/0.000	7.402/2.022	6.486	0.000	8.203	
0.000	5.581	6.618	0.000	7.379	α'_{xx}
		6.091	0.000	7.303	
0.000/0.000	10.248/2.943	2.926	0.000	8.799	
0.000	8.153	2.770	0.000	7.865	α'_{vv}
		3.486	0.000	7.753	
0.000/0.000	4.172/2.243	1.489	0.000	7.562	
0.000	3.523	1.568	0.000	7.273	α'_{zz}
		1.246	0.000	7.233	
8.771/0.346	0.000/0.000	0.000	2.505	0.000	
6.708	0.000	0.000	1.961	0.000	α'_{xy}
		0.000	3.775	0.000	
0.000/0.000	3.374/0.346	5.475	0.000	0.198	
0.000	2.653	5.439	0.000	0.515	α'_{xz}
		5.655	0.000	0.556	
5.607/1.040	0.000/0.000	0.000	4.053	0.000	
4.738	0.000	0.000	3.791	0.000	α'_{vz}
		0.000	4.978	0.000	

Table SI-2 Vibrational frequencies* (cm⁻¹) and derivatives of the dipole moment $(\partial \mu_{\alpha}/\partial Q)$ and of the polarizability $(\partial \alpha_{\alpha\beta}/\partial Q)$,[‡] computed at the B3LYP/aug-cc-pVDZ (with the SuperFine grid) level.[†]. The "′" indicates the derivative with respect to the corresponding normal coordinate.

*The harmonic vibrational frequencies have been scaled by a factor of 0.96. [†]For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl, and Free Methyl models, respectively. [‡] $\alpha'_{xy} = \alpha'_{yx}$; $\alpha'_{xz} = \alpha'_{zx}$; $\alpha'_{yz} = \alpha'_{zy}$. [§] d_1^+ , d_2^- , d_1^- , $d_2^- \equiv$ Free Chain; d^+ , $d^- \equiv$ Free Ethyl.

	r^+	r_a^-	r_{b}^{-}	$d^+ (d_1^+/d_2^+)^{\S}$	$d^{-}(d_{1}^{-}/d_{2}^{-})^{\S}$
	2909	2978	2984	2898/2904	2926/2948
Freq	2908	2977	2984	2901	2936
	2908	2974	2984		
	0.032	0.000	0.205	0.003/0.219	0.000/0.000
μ'_r	0.021	0.000	0.202	0.149	0.000
	0.005	0.000	0.190		
	0.000	0.260	0.000	0.000/0.000	0.013/0.207
μ'_{v}	0.000	0.232	0.000	0.000	0.137
	0.000	0.186	0.000		
	0.197	0.000	0.021	0.045/0.147	0.000/0.000
μ'_z	0.161	0.000	0.023	0.151	0.000
	0.185	0.000	0.032		
	9.089	0.000	6.466	6.712/0.449	0.000/0.000
α'_{xx}	8.296	0.000	6.583	4.346	0.000
	7.420	0.000	6.102		
	10.013	0.000	3.060	9.576/1.165	0.000/0.000
α'_{vv}	9.104	0.000	2.919	6.825	0.000
	7.779	0.000	3.577		
	8.151	0.000	1.490	3.569/0.740	0.000/0.000
α'_{zz}	7.741	0.000	1.559	2.324	0.000
	7.240	0.000	1.264		
	0.000	2.594	0.000	0.000/0.000	8.776/0.364
α'_{xy}	0.000	2.070	0.000	0.000	6.705
	0.000	3.806	0.000		
	0.070	0.000	5.556	3.419/0.331	0.000/0.000
α'_{xz}	0.162	0.000	5.522	2.709	0.000
	0.643	0.000	5.718		
	0.000	4.096	0.000	0.000/0.000	5.639/1.002
α'_{vz}	0.000	3.834	0.000	0.000	4.736
	0.000	4.976	0.000		

Table SI-3 Vibrational frequencies* (cm⁻¹), and derivatives of the dipole moment $(\partial \mu_{\alpha}/\partial Q)$ and of the polarizability $(\partial \alpha_{\alpha\beta}/\partial Q)$,[‡]. Cartesian dipole moment and polarizability derivatives have been calculated at B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and projected onto the CCSD/aug-cc-pVDZ normal modes.[†]. The "′" indicates the derivative with respect to the corresponding normal coordinate.

*The harmonic vibrational frequencies have been scaled by a factor of 0.96. *For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl, and Free Methyl models, respectively. * $\alpha'_{xy} = \alpha'_{xx}$; $\alpha'_{xz} = \alpha'_{zx}$; $\alpha'_{yz} = \alpha'_{zy}$. * $d_1^+, d_2^+, d_1^-, d_2^- \equiv$ Free Chain; $d^+, d^- \equiv$ Free Ethyl.

	r^+	r_a^-	r_{h}^{-}	$d^+ (d_1^+/d_2^+)^{\S}$	$d^{-}(d_{1}^{-}/d_{2}^{-})^{\S}$
	2927	2993	2999	2917/2924	2941/2963
Freq	2926	2992	2999	2921	2951
	2926	2989	2998		
	0.074	0.003	0.202	0.004/0.198	0.000/0.003
μ'_x	0.007	0.003	0.200	0.142	0.002
	0.006	0.002	0.186		
	0.001	0.258	0.003	0.000/0.003	0.012/0.197
μ'_{v}	0.000	0.229	0.003	0.002	0.131
	0.000	0.182	0.003		
	0.216	0.000	0.020	0.035/0.100	0.000/0.000
μ'_z	0.165	0.000	0.022	0.133	0.000
-	0.176	0.000	0.032		
	7 978	0.069	5 828	6 440/2 044	0 208/0 015
α'	7 459	0.056	5 926	4 509	0.168
uxr	7.015	0.100	5.439		01100
	8.551	0.066	2.646	9.364/2.843	0.227/0.003
α	7.994	0.052	2.526	7.039	0.165
yy	7.315	0.097	3.208		
	6.983	0.001	1.352	3.707/2.123	0.005/0.004
α'_{zz}	6.853	0.002	1.410	2.758	0.001
ι.	6.585	0.001	1.105		
	0.013	2.331	0.119	0.048/0.001	7.806/0.348
α'_{rv}	0.006	1.831	0.119	0.035	5.997
~,	0.004	3.467	0.122		
	0.100	0.046	4.872	3.145/0.280	0.068/0.014
α'_{x_7}	0.306	0.043	4.844	2.481	0.059
	0.538	0.059	5.046		
	0.004	3.574	0.065	0.039 - 0.010	5.069/0.928
α'_{vz}	0.003	3.325	0.065	0.035	4.278
*	0.007	4.413	0.068		

Table SI-4 Vibrational frequencies^{*} (cm⁻¹), and derivatives of the dipole moment $(\partial \mu_{\alpha}/\partial Q)$ and of the polarizability $(\partial \alpha_{\alpha\beta}/\partial Q)$,[‡]. Cartesian dipole moment and polarizability derivatives have been calculated at the CCSD/aug-cc-pVDZ level and projected onto CCSD/cc-pVTZ normal modes.[†]. The " ' " indicates the derivative with respect to the corresponding normal coordinate.

*The harmonic vibrational frequencies have been scaled by a factor of 0.96. [†]For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl, and Free Methyl models, respectively. [‡] $\alpha'_{xy} = \alpha'_{xx}$; $\alpha'_{xz} = \alpha'_{xx}$; $\alpha'_{yz} = \alpha'_{zy}$. [§] d_1^+ , d_2^- , d_1^- , $d_2^- \equiv$ Free Chain; d^+ , $d^- \equiv$ Free Ethyl.

	r^+	r_a^-	r_{h}^{-}	$d^+ (d_1^+/d_2^+)^{\S}$	$d^{-}(d_{1}^{-}/d_{2}^{-})^{\$}$
	2900	2955	2960	2881/2889	2897/2921
Freq	2899	2954	2960	2885	2907
-	2899	2951	2959		
	0.052	0.002	0.204	0.004/0.212	0.000/0.001
μ'_r	0.016	0.001	0.201	0.146	0.001
•	0.008	0.001	0.185		
	0.000	0.257	0.001	0.000/0.001	0.012/0.205
μ'_{y}	0.000	0.229	0.001	0.001	0.135
2	0.000	0.184	0.001		
	0.212	0.000	0.017	0.016/0.126	0.000/0.000
μ_z'	0.189	0.000	0.020	0.110	0.000
-	0.183	0.000	0.032		
	7.601	0.020	6.463	7.975/0.778	0.096/0.002
α'_{xx}	6.902	0.015	6.584	5.891	0.069
.u	7.178	0.035	6.006		
	8.051	0.026	2.744	10.910/1.594	0.088/0.004
α'_{nn}	7.236	0.020	2.598	8.541	0.071
yy	7.659	0.039	3.393		
	7.301	0.002	1.548	4.811/1.231	0.003/0.001
α'_{77}	6.961	0.002	1.620	3.923	0.002
ü	7.151	0.002	1.268		
	0.000	2.499	0.047	0.014/0.005	8.627/0.324
α'_{rv}	0.004	1.981	0.047	0.013	6.591
xy	0.003	3.714	0.048		
	0.435	0.026	5.360	3.355/0.283	0.030/0.006
α'_{rr}	0.666	0.024	5.325	2.639	0.025
	0.559	0.029	5.572		
	0.001	4.020	0.032	0.019/0.001	5.504/0.981
α'_{vz}	0.005	3.766	0.031	0.014	4.633
v =	0.004	4.899	0.032		

Table SI-5 Vibrational frequencies* (cm⁻¹), and derivatives of the dipole moment $(\partial \mu_{\alpha}/\partial Q)$ and of the polarizability $(\partial \alpha_{\alpha\beta}/\partial Q)$,[‡]. Cartesian dipole moment and polarizability derivatives have been calculated at the B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and projected onto B3LYP/cc-pVTZ (with the SuperFine grid) normal modes.[†]. The "′" indicates the derivative with respect to the corresponding normal coordinate.

*The harmonic vibrational frequencies have been scaled by a factor of 0.96. [†]For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl, and Free Methyl models, respectively. [‡] $\alpha'_{xy} = \alpha'_{xx}$; $\alpha'_{xz} = \alpha'_{xx}$; $\alpha'_{yz} = \alpha'_{zy}$. [§] d_1^+ , d_2^- , d_1^- , $d_2^- \equiv$ Free Chain; d^+ , $d^- \equiv$ Free Ethyl.

	r^+	r_a^-	r_{b}^{-}	$d^+ (d_1^+/d_2^+)^{\S}$	$d^{-}(d_{1}^{-}/d_{2}^{-})^{\S}$
	2927	2993	2999	2917/2924	2941/2963
Freq	2926	2992	2999	2921	2951
•	2926	2989	2998		
	0.076	0.003	0.202	0.004/0.204	0.000/0.003
μ'_r	0.008	0.003	0.200	0.147	0.002
	0.006	0.002	0.186		
	0.001	0.260	0.003	0.000/0.003	0.012/0.199
μ'_{ν}	0.000	0.230	0.003	0.002	0.132
	0.000	0.183	0.002		
	0.223	0.000	0.019	0.036/0.103	0.000/0.000
μ_{z}'	0.171	0.000	0.021	0.137	0.000
	0.183	0.000	0.032		
	8.314	0.073	6.323	6.975/2.105	0.229/0.016
α'_{xx}	7.737	0.058	6.427	4.873	0.184
	7.259	0.107	5.903		
	8.897	0.070	2.885	9.838/2.966	0.249/0.003
α'_{vv}	8.311	0.054	2.760	7.399	0.181
	7.598	0.104	3.476		
	7.522	0.002	1.502	3.927/2.285	0.006/0.004
α'_{77}	7.387	0.002	1.564	2.923	0.001
4.A.	7.102	0.002	1.239		
	0.014	2.466	0.130	0.048/0.001	8.581/0.349
α'_{rv}	0.007	1.913	0.129	0.035	6.574
~,	0.004	3.711	0.132		
	0.162	0.050	5.384	3.387/0.295	0.074/0.015
α'_{rr}	0.381	0.047	5.354	2.677	0.065
	0.633	0.065	5.571		
	0.005	3.922	0.072	0.042/0.011	5.552/1.020
α'_{vz}	0.004	3.650	0.072	0.037	4.688
<i>y</i> -	0.008	4.841	0.075		

Table SI-6 Vibrational frequencies^{*} (cm⁻¹), and derivatives of the dipole moment $(\partial \mu_{\alpha}/\partial Q)$ and of the polarizability $(\partial \alpha_{\alpha\beta}/\partial Q)$,[‡]. Cartesian dipole moment and polarizability derivatives have been calculated at the B3LYP/aug-cc-pVDZ (with the SuperFine grid) level and projected onto CCSD/cc-pVTZ normal modes.[†].The " / " indicates the derivative with respect to the corresponding normal coordinate.

*The harmonic vibrational frequencies have been scaled by a factor of 0.96. *For each property the first, second, and third rows correspond to the Free Chain, Free Ethyl, and Free Methyl models, respectively. * $\alpha'_{xy} = \alpha'_{yx}$: $\alpha'_{xz} = \alpha'_{zy}$: $\alpha'_{yz} = \alpha'_{zy}$. * $d_1^+, d_2^+, d_1^-, d_2^- \equiv$ Free Chain; $d^+, d^- \equiv$ Free Ethyl.

Table SI-7 Ratio between the intensity (maximum) of the peaks $r_a^- + r_b^-$ and r^+ calculated within the Free Chain model (see figs. SI-1 and SI-2)

		ррр	ssp
		NM: aug-cc-pVDZ Properties: aug-cc-pVDZ	
NM:CCSD	Properties:CCSD	2.3	0.11
NM:B3LYP	Properties:B3LYP	3.6	0.14
NM:CCSD	Properties:B3LYP	2.3	0.12
		NM: cc-pVTZ Properties: aug-cc-pVDZ	
NM:CCSD	Properties:CCSD	3.6	0.16
NM:B3LYP	Properties:B3LYP	4.0	0.15
NM:CCSD	Properties:B3LYP	3.6	0.16