Supplementary materials (ESI)

Ionic liquids for metal extraction from chalcopyrite: solid, liquids and gas phases study.

Olga Kuzmina, Emmanouil Symianakis, Daniel Godfrey, Tim Albrecht, Tom Welton.

- 1. Synthesis of ionic liquids
- 2. Effect of the agitation on leaching
- 3. Kinetics of chalcopyrite dissolution
- 4. Leaching in sulfuric acid
- 5. Interpretation of XPS results
- 6. Test on the formation of Cu(I) carbenes

1. Synthesis of ionic liquids

The ionic liquids 1-butylimidazolium hydrogensulfate $[HC_4im][HSO_4]$, 1-butyl-3-methylimidazolium hydrogensulfate $[C_4C_1im][HSO_4]$, 1-H-imidazolium hydrogensulfate $[HHim][HSO_4]$, ethylammonium hydrogensulfate $[N_{0002}][HSO_4]$ and 1-butyl-3-methylimidazolium dicyanamide $[C_4C_1im][N(CN)_2]$ were synthesised and purified following the synthetic methods below:

Imidazolium hydrogensulfate [HHim][HSO₄]:

Sulfuric acid (95 %, 1 *equiv.*) was added to an aqueous solution of recrystallized imidazole (1 *equiv.*) under $N_{2(g)}$ at 0 °C. The resulting mixture was stirred overnight and the water evaporated on a rotary evaporator, and the IL dried *in vacuo*. IL purity and cation:anion ratio was checked by NMR (400 *MHz, Bruker*) and hygroscopic water uptake was checked prior to use using Karl-Fischer titration (*TitroLine 7500 KF Titrator, Lab Synergy*).

 δ H (400 *MHz*, DMSO-d₆): 9.04 (1H, s, C²H), 7.74 (1H, d, C⁴H), 7.63 (1H, d, C⁵H) ppm. δC (100 MHz; DMSO-d₆): 136.83 (C²), 123.65 (C⁴), 121.98 (C⁵) ppm.

1-butylimidazolium hydrogensulfate [HC₄im][HSO₄]:

As for $[HHim][HSO_4]$, but using an aqueous solution of freshly dried and distilled 1-butylimidazole.

 $\delta H (400 \text{ MHz; DMSO-d}_6): 8.66 (1H, s, C^2H), 7.60(1H, s, C^4H), 7.43(1H, s, C^5H), 4.12 (2H, t, NCH_2), 1.75 (2H, m, NCH_2CH_2), 1.25 (2H, m, NCH_2CH_2CH_2) and 0.89 (3H, t, NCH_2CH_2CH_2CH_3) ppm.$

 δC (100 MHz; DMSO-d₆): 136.33 (C²), 123.05 (C⁴), 121.58 (C⁵), 47.86 (NCH₂), 32.26 (NCH₂CH₂), 19.38 (NCH₂CH₂CH₂) and 13.76 (NCH₂CH₂CH₂CH₃) ppm.

1-butyl-3-methylimidazolium hydrogensulfate [C₄C₁im][HSO₄]:

The synthesis of $[C_4C_1im][HSO_4]$ involved two steps:

1. Synthesis of 1-Butyl-3-Methylimidazolium Methyl Sulfate, [C₄C₁im][CH₃OSO₃]

 $(CH_3)_2SO_4$ (*1 equiv.*) was then added dropwise into 1-butylimidazole (*1 equiv.*) solution in toluene. This resulted bottom layer, containing the formed ionic liquid $[C_4C_1im][CH_3OSO_3]$, was washed with toluene. The excess toluene was removed from the ionic liquid by rotary evaporation. The ionic liquid was then dried at 50 °C in *vacuo* overnight.

2. Synthesis of [C₄C₁im][HSO₄]

 $[C_4C_1im][CH_3OSO_3]$ was mixed with distilled water and a few drops of H₂SO₄ catalyst was added into the solution. The mixture was heated to 170 °C and distilled water was constantly added dropwise into the mixture for 3 h. Then the mixture was cooled to room temperature and flushed through a C-18 purification column. The excess water was removed from the ionic liquid by rotary evaporation. The ionic liquid was dried at 50 °C in *vacuo* overnight. δ H (400 MHz; DMSO-d₆): 9.22 (1H, s, HSO₄), 9.01 (1H, s, C²H) 7.82 (1H, s, C⁵H), 7.74 (1H, s, C⁴H), 4.18 (2H, t, NCH₂), 3.87 (3H, s, NCH₃), 2.34 (3H, s, H₃CSO₃), 1.73 (2H, m, NCH₂CH₂), 1.20 (2H, m, N(CH₂)₂CH₂) and 0.82 (3H, t, N(CH₂)₃CH₃) ppm.

 δC (100 MHz; DMSO-d₆): 137.18 (C²), 123.98 (C⁴), 122.74 (C⁵), 48.84 (NCH₂), 36.06 (NCH₃), 31.88 (NCH₂CH₂), 19.16 (N(CH₂)₂CH₂) and 13.64 (N(CH₂)₃CH₃) ppm.

Ethylammonium hydrogensulfate [N₀₀₀₂][*HSO*₄] As for [*HHim*][*HSO*₄], but using aqueous solution of ethylamine.

 δH (400 MHz; DMSO-d_6): 10.69 (1H, s, HSO4), 7.64 (3H, t, NH3), 2.80 (2H, m, CH2), 1.12 (3H, t, CH3) ppm.

 δ C (100 MHz; DMSO-d₆): 36.12 (CH₂), 12.4 (CH₃) ppm.

1-butyl-3-methylimidazolium dicyanamide [C₄C₁im][N(CN)₂]:

From Prof. Welton group stock, synthesised according to protocol.¹

δH (400 MHz, DMSO-d₆): 9.10 (1H, s, C²H), 7.75 (1H, s, C⁵H), 7.68 (1H, s, C⁴H), 4.17 (2H, t, NCH₂), 3.85 (3H, s, NCH₃), 1.77 (2H, m, NCH₂CH₂), 1.26 (2H, m, N(CH₂)₂CH₂), 0.89 (3H, t, N(CH₂)₃CH₃) ppm.

δC (100 MHz, DMSO-d₆): 199.55 (N(CN)₂) 136.96 (C²), 124.02 (C⁴), 122.68 (C⁵), 49.00 (NCH₂), 36.17 (NCH₃), 31.80 (NCH₂CH₂), 19.32 (N(CH₂)₂CH₂), 13.65 (N(CH₂)₃CH₃) ppm.

1-butyl-3-methylimidazolium acetate [C₄C₁im][OAc]:

From Prof. Welton group stock, synthesised according to protocol.²

 H (400 MHz; DMSO-d₆): 9.05 (1H, s, C²H) 7.89 (1H, s, C⁵H), 7.74 (1H, s, C⁴H), 4.20 (2H, t, NCH₂),
3.88 (3H, s, NCH₃), 1.75 (2H, m, NCH₂CH₂), 1.20 (2H, m, N(CH₂)₂CH₂) and 0.82 (3H, t, N(CH₂)₃CH₃) ppm. δC (100 MHz; DMSO-d₆): 137.18 (C²), 123.98 (C⁴), 122.74 (C⁵), 48.84 (NCH₂), 36.06 (NCH₃), 35.72 (CH₃COO), 31.88 (NCH₂CH₂), 29.78 (OOCCH₃), 19.16 (N(CH₂)₂CH₂), 13.64 (N(CH₂)₃CH₃) ppm.

1-butylimidazolium nitrate [HC₄im][NO₃]:

Nitric acid (70%, 1 *equiv.*) was added to an aqueous solution of recrystallized imidazole (1 *equiv.*) under $N_{2(g)}$ at 0 °C. The resulting mixture was stirred overnight and the water evaporated on a rotary evaporator, and the IL dried *in vacuo*. IL purity and cation: anion ratio was checked by NMR (400 *MHz*, *Bruker*) and hygroscopic water uptake was checked prior to use using Karl-Fischer titration (*TitroLine 7500 KF Titrator, Lab Synergy*).

δH (400 MHz, DMSO-d6): δ 9.11 (1H, s, C²H), 7.89 (1H, d, C⁴H), 7.80 (1H, d, C⁵H), 4.22 (2H, t, NCH₂), 1.88 (2H, m, NCH₂CH₂), 1.30 (2H, m, NCH₂CH₂CH₂), 1.05 (3H, t, NCH₂CH₂CH₂CH₂) ppm.

 δ C (100 MHz; DMSO-d₆): 138.31 (C²), 122.45 (C⁴), 121.32 (C⁵), 46.76 (NCH₂), 38.20 (NCH₂CH₂), 20.14 (NCH₂CH₂CH₂) and 14.65 (NCH₂CH₂CH₂CH₃) ppm.

The structures of the studied cations and anions are presented below:

acetate

Fig. S1. Cations and anions of the ILs used for chalcopyrite leaching.

2. Effect of the agitation on leaching

Fig. S2. Effect of the agitation on leaching of copper and iron from chalcopyrite in 0.45 M [HC₄im][HSO₄] solution after 7 days of leaching at 343 K.

3. Kinetics of chalcopyrite dissolution

Cu extraction modelling

Model	Equation	Temperature, K (°C)	Rate constant	R ²	mean R ²
a) surface	kt=[1 - (1 -	298 (25)	5.27 x 10 ⁻⁶	0.90267	0.928042
chemical	a) ^{1/3}]	313 (40)	5.03 x 10 ⁻⁶	0.85517	
reaction		333 (60)	4.02 x 10 ⁻⁶	0.99923	
		343 (70)	3.38 x 10⁻ ⁶	0.91078	
		363 (90)	3.26 x 10⁻ ⁶	0.97236	
b) diffusion	kt=[1-2/3a-(1-	298 (25)	1.86 x 10 ⁻⁸	0.99467	0.99176
through the	a) ^{2/3}]	313 (40)	1.98 x 10⁻ ⁸	0.98172	
product layer		333 (60)	2.84 x 10 ⁻⁸	0.99723	
		343 (70)	4.39 x 10⁻ ⁸	0.99853	
		363 (90)	6.69 x 10⁻ ⁸	0.98665	
c) avrami	a = 1-exp(-kt) ⁿ	298 (25)	5.65 x 10 ⁻⁶	0.92946	0.931156
		313 (40)	8.11 x 10 ⁻⁴	0.95219	
		333 (60)	1.61 x 10 ⁻³	0.92864	
		343 (70)	2.08 x 10 ⁻³	0.9217	
		363 (90)	2.17 x 10 ⁻³	0.92379	
d) time to a	a=kt ^{3/2}	298 (25)	3.26 x 10 ⁻⁶	0.71035	0.856086
given fraction	a= 0.015	313 (40)	3.38 x 10 ⁻⁶	0.94472	
		333 (60)	4.02 x 10 ⁻⁶	0.80533	
		343 (70)	5.03 x 10 ⁻⁶	0.82157	
		363 (90)	5.27 x 10 ⁻⁶	0.99846	

Fe extraction modelling

Time, min

1

cl	In(time)		d)	(time) ^{3/2}	
	1	1	<u>u)</u>	1	1
Model	Equation	Temperature,	Rate constant	R ²	mean R ²
		K (°C)			
a) surface	kt=[1 - (1 -	298 (25)	6.13 x 10 ⁻⁶	0.93588	0.98565
chemical	a) ^{1/3}]	313 (40)	8.27 x 10⁻ ⁶	0.99972	
reaction		333 (60)	9.07 x 10 ⁻⁶	0.99482	
		343 (70)	9.38 x 10⁻ ⁶	0.99895	
		363 (90)	1.14 x 10 ⁻⁵	0.99888	
b) diffusion	kt=[1-2/3a-(1-	298 (25)	1.05 x 10 ⁻⁷	0.97754	0.98063
through the	a) ^{2/3}]	313 (40)	1.30 x 10 ⁻⁷	0.98468	
product layer		333 (60)	1.34 x 10 ⁻⁷	0.98153	
		343 (70)	1.37 x 10 ⁻⁷	0.97997	
		363 (90)	1.99 x 10 ⁻⁷	0.97943	
c) avrami	a = 1-exp(-kt) ⁿ	298 (25)	1.73 x 10 ⁻⁶	0.98788	0.89491
		313 (40)	5.43 x 10 ⁻⁵	0.86329	
		333 (60)	5.52 x 10⁻⁵	0.86371	
		343 (70)	6.05 x 10⁻⁵	0.87604	
		363 (90)	8.15 x 10⁻⁵	0.88363	
d) time to a	a=kt ^{3/2}	298 (25)	1.98 x 10⁻⁴	0.87648	0.958982
given fraction	a= 0.015	313 (40)	2.77 x 10 ⁻⁴	0.98584	
		333 (60)	3.02 x 10 ⁻⁴	0.96955	
		343 (70)	3.13 x 10⁻⁴	0.98173	
		363 (90)	3.78 x 10⁻⁴	0.98131	

Fig. S3. Cu and Fe leaching modelling using

Fig. S4. Arrhenius plot for Cu (a) ($E_a = 18.4 \text{ kJ mol}^{-1}$), Fe (b) ($E_a = 7.7 \text{ kJ mol}^{-1}$) and Fe (c) ($E_a = 7.4 \text{ kJ mol}^{-1}$) for leaching from CuFeS₂.

3. Leaching in sulfuric acid

Fig. S5. Leaching of copper with 0.075 M H_2SO_4 at 343 K.

Fig. S6. Raw data of E_h (3 repeats) for 400 mL-scale CuFeS₂(s) dissolution over extended ~1 month ambient leach durations in: A) 0.075 M H₂SO_{4aq}; B) 0.45M [C₄Him][HSO₄]_{aq}.

5. Interpretation of XPS results:

Table S1. Binding energies of C_{1s} , $Cu_{2p}^{3/2}$ and $Cu_{2p}^{1/2}$ as obtained after the charge correction of 0.4 eV.

Binding En./ eV	C _{1s}	Cu _{2p} ^{3/2}	Cu _{2p} ^{1/2}
Cleaved	285.1	932.2	952.0
Oxidised	284.6	932.2	952.0
s3	285.2	932.2	952.0
s4	285.0	932.2	952.0

The reference point for the final charge correction of the spectra is taken from $Cu_{2p}^{3/2}$ with a binding energy at 932.2 ±0.1eV, Fig. S6.

Fig. S7. Cu_{2p} region from a cleaved surface. $Cu_{2p}^{3/2}$ at 932.2±0.1 eV and $Cu_{2p}^{1/2}$ at 952.0 ±0.1 eV BEs are used as internal reference.

Fig. S8. S_{2p} region of a cleaved chalcopyrite surface: 1) spectrum and fitting, 2) background, 3) stoichiometric S_{2p} at a binding energy (BE) of 161.3 eV, 4) the surface disulfides at 161.9 eV, 5) the satellite peak of disulfides at 164.4 eV, 6) an extra peak at 162.9 eV that corresponds to polysulfides or S⁰ species.

Fig. S9. S_{2p} region of the sample leached in $[HC_4im][HSO_4]$ (0.45 M) aqueous solutions at 70 °C after 8 days in: a) 0.45 M $[HC_4im][HSO_4]$ (0.45 M) aqueous solution: 1) spectrum and fitting, 2) background, 3) stoichiometric S_{2p} at a binding energy (BE) of 161.3 eV, 4) the surface disulfides at 161.9 eV, 5) the satellite peak of disulfides at 164.4 eV, 6) and 7) polysulfides at 162.9 and 163.8 eV; b) 0.45 M $[N_{0002}][HSO_4]$ aqueous solution: 1) spectrum and fitting, 2) background, 3) stoichiometric S_{2p} at a binding energy (BE) of 161.3 eV, 4) the surface disulfides at 163.8 eV; b) 0.45 M $[N_{0002}][HSO_4]$ aqueous solution: 1) spectrum and fitting, 2) background, 3) stoichiometric S_{2p} at a binding energy (BE) of 161.3 eV, 4) the surface disulfides at 161.9 eV, 5) polysulfides or S⁰ species at 163.4 eV.

Fig. S10. Fe_{2p} regions of the chalcopyrite samples and after leaching in 0.45 M [HC₄im][HSO₄] (1) and 0.45 M [N₀₀₀₂][HSO₄] (2) solutions.

Fig. S11 Comparison of the O1s regions of the cleaved surface (1) and after leaching for 24 h in 0.45 M $[HC_4im][HSO_4]$ (2) and 0.45 M $[N_{0002}][HSO_4]$ (3) solutions.

Table S2. Binding energies and commonly found interpretations of the peaks that can be used for the fitting of the O_{1s} regions

O _{1s} region	Ref.
531.1 eV O-Cu	3
530.9eV OH	4
532.0 eV O=C-O	3
532.2 eV CuSO ₄	5
532.5 eV FeSO ₄	6
533.4 eV C-O,H ₂ O	3,4
532.3-533.2 eV O related to Fe and C	7
529.7-531.3 eV Fe oxides and defective oxides	7

6. Test for carbene formation

Fig. S12. Reaction catalysed by Cu(I) carbene complex.

NMR: NMR spectra has showed only peaks corresponded to $[HC_4im][HSO_4]$ (Fig. S13) and was decided to analyse the residue with mass spectrometry, looking for 1-benxyl-4-phenyl(1,2,3)triazole peaks at 235.11-237.11 (Fig. S14). The absence of the peaks of the carbene compound confirms that the carbene complex was not observed in the studied leached systems.

Fig. S13. ¹H NMR spectrum of the dry residue of chalcopyrite leachate with benzylazide and phenylacetylene. Only the signals of IL were observed.

Fig. S14. MS spectra at the region where catalysed carbene complex would be found.

References:

- 1 M. A. A. Rani, A. Brant, L. Crowhurst, A. Dolan, M. Lui, N. H. Hassan and J. P, *Phys. Chem. Chem. Phys.*, 2011, **13**, 16831–16840.
- 2 M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes and T. Welton, *Phys. Chem. Chem. Phys.*, 2013, **15**, 20480–95.
- 3 E. Cano, C. L. Torres and J. M. Bastidas, *Mater. Corros.*, 2001, **52**, 667–676.
- 4 S. L. Harmer, J. E. Thomas, D. Fornasiero and A. R. Gerson, *Geochim. Cosmochim. Acta*,

2006, **70**, 4392–4402.

- 5 S. K. Chawla, N. Sankarraman and J. H. Payer, *J. Electron Spectros. Relat. Phenomena*, 1992, **61**, 1–18.
- 6 Y. Li, N. Kawashima, J. Li, A. P. Chandra and A. R. Gerson, *Adv. Colloid Interface Sci.*, 2013, **197-198**, 1–32.
- 7 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson and R. S. C. Smart, *Appl. Surf. Sci.*, 2011, **257**, 2717–2730.