## **Supporting Information**

Influence of Surface Area, Porous Structure, and Surface State on the Supercapacitor Performance of Titanium Oxynitride: Implications for Nanostructuring Strategy

*Eun Joo Lee*,<sup> $\dagger,\#$ </sup> *Lanlee Lee*,<sup> $\dagger,\#$ </sup> *Muhammad Awais Abbas*,<sup> $\ddagger$ </sup> *and Jin Ho Bang*<sup> $*,\dagger,\ddagger,\$$ </sup>

Department of Bionano Technology, Department of Advanced Materials Engineering, and Department of Chemical and Molecular Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea

AUTHOR INFORMATION

## **Corresponding Author: Jin Ho Bang**

\*Email: jbang@hanyang.ac.kr

<sup>†</sup> Department of Bionano Technology, Hanyang University

<sup>‡</sup> Department of Advanced Materials Engineering, Hanyang University

§ Department of Chemical and Molecular Engineering, Hanyang University

<sup>#</sup> These authors contributed equally to this work.



Figure S1. Time-resolved SEM images of h-TiO<sub>x</sub>N<sub>1-x</sub> at different NH<sub>3</sub> annealing times.



Figure S2. SEM images of h-TiO<sub>x</sub>N<sub>1-x</sub> obtained after (A and B) 2 h and (C and D) 3 h of nitridation.



**Figure S3.** XRD patterns of h-TiO<sub>x</sub>N<sub>1-x</sub> obtained after (A) 2 h and (B) 3 h of nitridation. N<sub>2</sub> adsorption/desorption isotherms and the pore-size distribution of (C and D) h-TiO<sub>x</sub>N<sub>1</sub> (2h) and (E and F) h-TiO<sub>x</sub>N<sub>1</sub> (3h). The BET surface areas of h-TiO<sub>x</sub>N<sub>1</sub> (2h) and of h-TiO<sub>x</sub>N<sub>1</sub> (3h) are 64.5 and 68.6 m<sup>2</sup>g<sup>-1</sup> and their pore volumes are 0.461 and 0.549 cm<sup>3</sup>g<sup>-1</sup>, respectively. These increases in the surface area and pore volume as compared to those of h-TiO<sub>x</sub>N<sub>1-x</sub> obtained after 1 h of nitridation result from the partial collapse of the hexagonal secondary structure.

**Table S1.** Lattice parameters of TiO and TiN taken from JCPDS database. The red-colored JCPDS cards are the most commonly used ones in the literature. We too referred to these cards for the identification of our materials.

| TiO               |                       | TiN               |                       |
|-------------------|-----------------------|-------------------|-----------------------|
| JCPDS card number | Lattice parameter (Å) | JCPDS card number | Lattice parameter (Å) |
| 04-004-9041       | 4.1705                | 04-002-0575       | 4.226                 |
| 03-065-9473       | 4.1705                | 01-087-0632       | 4.234                 |
| 01-089-5010       | 4.172                 | 04-004-5181       | 4.235                 |
| 01-089-3660       | 4.1735                | 04-002-0166       | 4.235                 |
| 04-001-6834       | 4.174                 | 01-074-8388       | 4.235                 |
| 04-004-8994       | 4.1766                | 04-002-6279       | 4.2399                |
| 00-008-0117       | 4.177                 | 04-004-6867       | 4.24                  |
| 04-007-8198       | 4.177                 | 04-003-1310       | 4.24                  |
| 04-006-1351       | 4.177                 | 04-004-0779       | 4.241                 |
| 04-001-7607       | 4.178                 | 04-003-1280       | 4.241                 |
| 04-006-6021       | 4.179                 | 04-001-2272       | 4.241                 |
| 04-006-0746       | 4.18                  | 00-038-1420       | 4.24173               |
| 04-004-4098       | 4.18                  | 04-002-6734       | 4.242                 |
| 04-002-5613       | 4.18                  | 04-003-7146       | 4.243                 |
| 04-002-5455       | 4.18                  | 01-087-0629       | 4.244                 |
| 04-002-0427       | 4.181                 | 01-087-0628       | 4.244                 |
| 01-072-2741       | 4.184                 | 01-071-9845       | 4.2442                |
| 04-002-5596       | 4.185                 | 04-003-3767       | 4.246                 |
| 04-001-9372       | 4.185                 | 04-002-2466       | 4.249                 |
| 04-002-5624       | 4.19                  | 04-002-5535       | 4.25                  |
| 01-071-5272       | 4.2043                | 04-003-4495       | 4.26                  |
| 04-003-5563       | 4.22                  | 03-065-0965       | 4.27                  |
| 01-072-4593       | 4.293                 | 01-087-0631       | 4.32                  |



Figure S4. TEM images of h-TiO<sub>x</sub>N<sub>1-x</sub> at different magnifications.



**Figure S5.** XPS C 1s and K 2p spectra of  $n-TiO_xN_{1-x}$  taken (A) before and (B) after 2000 cycles of potential sweep. The XPS measurements were carried out after thoroughly washing  $n-TiO_xN_{1-x}$  electrode to remove any possible ion residues on the surface.



**Figure S6.** XRD patterns of (A) h-TiO<sub>x</sub>N<sub>1-x</sub> and (B) n-TiO<sub>x</sub>N<sub>1-x</sub> obtained after 2000 cycles of potential sweep. Note that the peaks labelled by the black-colored asterisks refer to diffraction peaks from carbon fiber paper used for an electrode substrate. Those by the red-colored asterisks are attributed to  $K_2Ti_4O_9$  phase resulting from the corrosion of TiO<sub>x</sub>N<sub>1-x</sub>.



**Figure S7.** SEM images of (A) h-TiO<sub>x</sub>N<sub>1-x</sub> (small aggregated particles sporadically observed are carbon additive (Super P) used for the preparation of electrode paste) and (B) n-TiO<sub>x</sub>N<sub>1-x</sub> obtained after 2000 cycles of potential sweep. It is somewhat difficult to specifically discern n-TiO<sub>x</sub>N<sub>1-x</sub> from the mixture of n-TiO<sub>x</sub>N<sub>1-x</sub> and super P in the SEM image. However, given that the amount of n-TiO<sub>x</sub>N<sub>1-x</sub> used for the electrode (80 wt%) and the absence of well-defined surface morphology (i.e., severely deformed nanoparticle network) that are clearly visible in the SEM image of n-TiO<sub>x</sub>N<sub>1-x</sub> presented in Figs. 4A and 4B, we infer that the structural collapse was more facilitated in the n-TiO<sub>x</sub>N<sub>1-x</sub> than in h-TiO<sub>x</sub>N<sub>1-x</sub>.