Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Strain induced new Phase and Indirect-Direct Band Gap Transition of Monolayer InSe

Ting Hu¹, Jian Zhou² and Jinming Dong^{3*}

- ¹ Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
- ² Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, P. R. China
- ³ National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, P. R. China

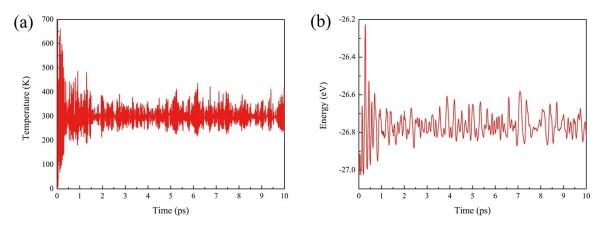


Fig. S1 Fluctuations of (a) temperature and (b) total energy as a function of the molecular dynamics simulation step at 300 K.

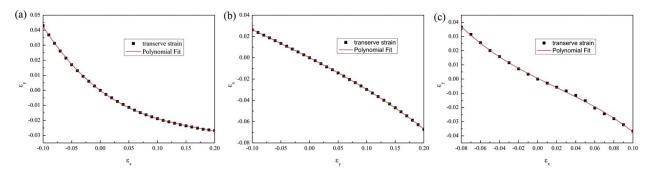


Fig. S2 (a)The in-plane Poisson's ratio ε_y versus ε_x under uniaxial strain ε_x for phase-I InSe. Data are fitted to function $y=-0.284x+1.191x^2-2.245x^3$. (b) ε_x versus ε_y under uniaxial strain ε_y for phase-I InSe. Data are fitted to function $y=-0.274x-0.169x^2-0.672x^3$. (c) ε_y versus ε_x under uniaxial strain ε_x for phase-II InSe. Data are fitted to function $y=-0.335x+0.649x^2-10.68x^3$.

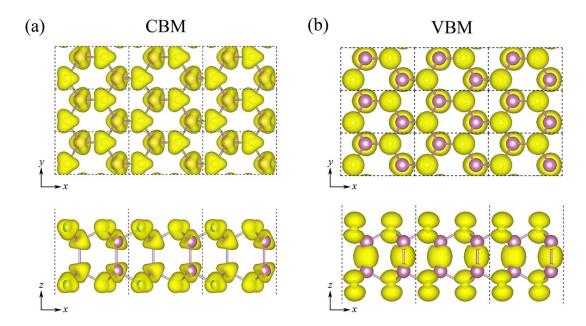


Fig. S3 The partial charge densities of (a) CBM and (b) VBM.