Photoexcitation dynamics of p-nitroaniline and *N*,*N*-dimethyl-p-nitroaniline in 1-alkyl-3methylimidazolium-cation based ionic liquids with different alkyl chain lengths

Yoshifumi Kimura^{*}, Shinya Ibaraki, Ryusei Hirano, Yosuke Sugita, Yoshiro Yasaka, Masakatsu Ueno

Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering,

Doshisha University, Kyotanabe, Kyoto, 610-0321, Japan

Corresponding Author

Y. Kimura

Email: yokimura@mail.doshisha.ac.jp

Tel: +81-774-65-6561

FAX: +81-774-65-6801

Table S1. Relative amplitudes and time constants obtained by the coevolution fit of the transient absorption profiles of pNA at different probe wavelengths to the multi-exponential function. The value of τ_3 is fixed to be 1000 ps. The errors are estimated from the residual of the fit and correlations of error matrix for each transient.

365 nm					
Cation	A_1	A_2	A_3	$ au_1$	τ_2
$C_2 mim^+$	-1 ± 0.04	$\textbf{-1.01}\pm0.03$	-0.11 ± 0.01	1.5 ± 0.1	7.4 ± 0.2
$C_4 mim^+$	-1 ± 0.06	$\textbf{-0.97} \pm 0.04$	-0.11 ±0.01	1.7 ± 0.1	8.0 ± 0.3
$C_6 mim^+$	-1 ± 0.04	$\textbf{-1.19}\pm0.04$	$\textbf{-0.17} \pm 0.01$	1.5 ± 0.1	7.9 ± 0.3
$C_8 mim^{\scriptscriptstyle +}$	-1 ± 0.05	$\textbf{-1.00}\pm0.05$	-0.15 ± 0.01	2.0 ± 0.1	8.1 ± 0.3
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.03	-1.41 ± 0.03	$\textbf{-}0.20\pm0.01$	1.6 ± 0.1	7.5 ± 0.2
$C_{12}mim^+$	-1 ± 0.09	$\textbf{-}1.45\pm0.07$	$\textbf{-}0.22\pm0.01$	1.6 ± 0.2	7.5 ± 0.4
380 nm					
Cation	A_1	A_2	A_3	$ au_1$	τ_2
$C_2 mim^+$	-1 ± 0.04	$\textbf{-0.51} \pm 0.04$	-0.017 ±0.005	1.7 ± 0.1	8.6 ± 0.7
$C_4 mim^+$	-1 ± 0.04	$\textbf{-0.56} \pm 0.04$	$\textbf{-0.027} \pm 0.005$	1.7 ± 0.1	8.5 ± 0.6
$C_6 mim^+$	-1 ± 0.05	$\textbf{-0.62} \pm 0.05$	$\textbf{-0.038} \pm 0.005$	1.9 ± 0.1	8.4 ± 0.7
$C_8 mim^+$	-1 ± 0.05	$\textbf{-0.62} \pm 0.05$	$\textbf{-0.045} \pm 0.005$	1.9 ± 0.1	8.3 ± 0.6
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.05	$\textbf{-}0.65\pm0.06$	$\textbf{-0.059} \pm 0.005$	$2.0~\pm~0.1$	8.7 ± 0.7
$C_{12}mim^+$	-1 ± 0.05	$\textbf{-}0.77\pm0.06$	$\textbf{-0.077} \pm 0.005$	$2.0~\pm~0.1$	8.7 ± 0.6
420 nm					
Cation	A_1	A_2	A_3	$ au_1$	$ au_2$
$C_2 mim^+$	-1 ± 0.01	0.44 ± 0.01	0.051 ± 0.001	0.38 ± 0.01	2.7 ± 0.1
$C_4 mim^+$	-1 ± 0.01	0.41 ± 0.01	0.047 ± 0.001	0.48 ± 0.01	2.8 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.41 ± 0.01	0.053 ± 0.001	0.41 ± 0.01	3.1 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.43 ± 0.01	0.046 ± 0.001	0.55 ± 0.01	3.2 ± 0.1
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.40 ± 0.01	0.049 ± 0.001	0.46 ± 0.01	3.4 ± 0.1
C ₁₂ mim ⁺	-1 ± 0.01	0.40 ± 0.01	0.041 ± 0.001	0.37 ± 0.02	3.2 ± 0.1

440 nm					
Cation	A_1	A_2	A_3	$ au_1$	$ au_2$
$C_2 mim^+$	-1 ± 0.01	0.55 ± 0.01	0.049 ± 0.001	0.55 ± 0.01	4.2 ± 0.1
$C_4 mim^+$	-1 ± 0.01	0.57 ± 0.01	0.047 ± 0.001	0.57 ± 0.01	4.6 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.56 ± 0.01	0.052 ± 0.001	0.56 ± 0.01	4.9 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.56 ± 0.01	0.054 ± 0.001	0.56 ± 0.01	5.4 ± 0.1
$C_{10}mim^+$	-1 ± 0.01	0.52 ± 0.01	0.051 ± 0.001	0.52 ± 0.01	5.1 ± 0.1
$C_{12}mim^+$	-1 ± 0.01	0.53 ± 0.01	0.068 ± 0.001	0.53 ± 0.01	5.2 ± 0.1
458 nm					
Cation	A_1	A_2	A_3	$ au_1$	$ au_2$
$C_2 mim^+ \\$	-1 ± 0.01	0.40 ± 0.01	0.051 ± 0.001	0.38 ± 0.01	2.7 ± 0.1
$C_4 mim^+ \\$	-1 ± 0.01	0.44 ± 0.01	0.047 ± 0.001	0.48 ± 0.01	2.8 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.39 ± 0.01	0.053 ± 0.001	0.41 ± 0.01	3.1 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.44 ± 0.01	0.046 ± 0.001	0.55 ± 0.01	3.2 ± 0.1
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.37 ± 0.01	0.049 ± 0.001	0.46 ± 0.01	3.4 ± 0.1
C ₁₂ mim ⁺	-1 ± 0.01	0.29 ± 0.01	0.041 ± 0.001	0.36 ± 0.01	3.2 ± 0.1
474 nm					
Cation	A_1	A_2	A_3	$ au_1$	$ au_2$
$C_2 mim^+$	-1 ± 0.01	0.41 ± 0.02	0.077 ± 0.001	0.34 ± 0.01	2.0 ± 0.1
$C_4 mim^+ \\$	-1 ± 0.01	0.45 ± 0.02	0.068 ± 0.001	0.40 ± 0.01	2.1 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.41 ± 0.01	0.075 ± 0.001	0.39 ± 0.01	2.2 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.36 ± 0.01	0.078 ± 0.001	0.40 ± 0.01	2.6 ± 0.1
$C_{10}mim^+$	-1 ± 0.01	0.39 ± 0.01	0.082 ± 0.001	0.38 ± 0.01	2.6 ± 0.1
$C_{12}mim^+$	-1 ± 0.01	0.33 ± 0.01	0.067 ± 0.001	0.30 ± 0.01	2.3 ± 0.1

Table S2. Relative amplitudes and time constants obtained by the coevolution fit of the transient absorption profiles of DMpNA at different probe wavelengths to the multi-exponential function. The value of τ_3 is fixed to be 1000 ps. The errors are estimated from the residual of the fit and correlations of error matrix for each transient.

365 nm

Cation	A_0	A_1	A_2	A_3	$ au_0$	τ_1	τ_2
C ₂ mim ⁺	0.39 ± 0.29	-1 ± 0.45	-0.40 ± 0.03	-0.054 ± 0.001	0.68 ± 0.01	3.2 ± 0.1	10.8 ± 0.1
$C_4 mim^+$	0.36 ± 0.03	-1 ± 0.04	$\textbf{-0.37} \pm 0.04$	-0.052 ± 0.002	0.60 ± 0.09	2.8 ± 0.2	9.1 ± 0.9
$C_6 mim^+$	0.71 ± 0.38	-1 ± 0.26	$\textbf{-0.80} \pm 0.04$	$\textbf{-0.089} \pm 0.003$	1.0 ± 0.3	2.7 ± 0.9	8.4 ± 1.0
$C_8 mim^+$	0.91 ± 0.52	-1 ± 0.31	-1.36 ± 0.05	$\textbf{-0.21} \pm 0.01$	0.93 ± 0.34	2.6 ± 1.5	8.0 ± 1.0
$C_{10}mim^{\scriptscriptstyle +}$	0.92 ± 1.01	-1 ± 0.89	$\textbf{-0.92}\pm0.03$	$\textbf{-0.14} \pm 0.01$	1.1 ± 0.5	2.2 ± 1.2	8.4 ± 0.8
$C_{12}mim^+$	1.1 ± 0.96	-1 ± 0.84	-1.08 ± 0.07	-0.15 ± 0.01	1.1 ± 0.4	2.2 ± 1.1	7.7 ± 0.5

380 nm

Cation	A_0	A_1	A_2	A_3	$ au_0$	τ_1	$ au_2$
$C_2 mim^+$	1.54 ± 3.15	-1 ± 0.30	$\textbf{-0.50} \pm 0.08$	$\textbf{-0.032} \pm 0.003$	0.27 ± 0.02	1.9 ± 0.2	7.6 ± 0.7
$C_4 mim^+$	1.39 ± 3.78	-1 ± 0.32	$\textbf{-0.35} \pm 0.05$	-0.032 ± 0.002	0.24 ± 0.02	2.1 ± 0.1	8.2 ± 0.6
$C_6 mim^+$	1.64 ± 5.84	-1 ± 0.34	$\textbf{-0.59} \pm 0.09$	-0.061 ± 0.003	0.25 ± 0.18	2.7 ± 0.2	8.5 ± 0.7
$C_8 mim^+$	1.78 ± 6.02	-1 ± 0.37	$\textbf{-0.70} \pm 0.12$	$\textbf{-0.084} \pm 0.003$	0.29 ± 0.02	2.7 ± 0.2	8.0 ± 0.6
$C_{10}mim^{\scriptscriptstyle +}$	1.81 ± 1.56	-1 ± 0.16	-0.75 ± 0.14	$\textbf{-0.094} \pm 0.002$	0.28 ± 0.01	3.0 ± 0.3	7.8 ± 0.7
$C_{12}mim^+$	1.77 ± 1.51	-1 ± 0.17	$\textbf{-0.72} \pm 0.15$	-0.095 ± 0.002	0.27 ± 0.01	3.2 ± 0.3	8.0 ± 0.8

405 nm					
Cation	A_1	A_2	A_3	$ au_1$	τ_2
$C_2 mim^+$	-1 ± 0.02	-0.01 ± 0.02	-0.011 ± 0.003	2.3 ± 0.1	12.7 ± 3.3
$C_4 mim^+$	-1 ± 0.02	$\textbf{-0.07} \pm 0.02$	-0.011 ±0.003	2.7 ± 0.1	13.3 ± 4.3
$C_6 mim^+$	-1 ± 0.03	$\textbf{-0.10} \pm 0.03$	-0.010 ± 0.004	2.8 ± 0.1	13.2 ± 3.8
$C_8 mim^+$	$\textbf{-}1\pm0.06$	$\textbf{-0.15} \pm 0.07$	$\textbf{-0.009} \pm 0.004$	2.7 ± 0.2	9.9 ± 3.3
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.04	$\textbf{-0.08} \pm 0.04$	$\textbf{-0.019} \pm 0.003$	3.1 ± 0.1	12.0 ± 5.1
C ₁₂ mim ⁺	-1 ± 0.03	-0.05 ± 0.03	-0.019 ± 0.003	3.3 ± 0.1	13.3 ± 7.4

420 nm

Cation	A_1	A_2	A_3	$ au_1$	$ au_2$
$C_2 mim^+$	-1 ± 0.04	0.09 ± 0.04	0.003 ± 0.002	1.9 ± 0.1	5.2 ± 0.1
$C_4 mim^+$	-1 ± 0.04	0.12 ± 0.04	0.007 ± 0.002	2.1 ± 0.1	5.6 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.11 ± 0.01	0.006 ± 0.001	2.2 ± 0.1	6.3 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.10 ± 0.01	0.005 ± 0.001	2.3 ± 0.1	6.9 ± 0.2
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.11 ± 0.01	0.009 ± 0.001	2.3 ± 0.1	6.8 ± 0.2
C ₁₂ mim ⁺	-1 ± 0.01	0.12 ± 0.01	0.015 ± 0.001	2.4 ± 0.1	6.6 ± 0.2

440 nm

Cation	A_1	A_2	A_3	τ_1	τ_2
$C_2 mim^+$	-1 ± 0.04	0.39 ± 0.01	0.017 ± 0.001	1.2 ± 0.1	7.4 ± 0.2
$C_4 mim^+$	-1 ± 0.04	0.38 ± 0.01	0.024 ± 0.002	1.2 ± 0.1	8.2 ± 0.3
$C_6 mim^+$	-1 ± 0.01	0.40 ± 0.01	0.031 ± 0.001	1.3 ± 0.1	8.1 ± 0.2
$C_8 mim^+$	-1 ± 0.01	0.40 ± 0.01	0.035 ± 0.002	1.4 ± 0.1	8.3 ± 0.3
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.39 ± 0.01	0.038 ± 0.002	1.3 ± 0.1	8.7 ± 0.4
$C_{12}mim^+$	-1 ± 0.02	0.40 ± 0.02	0.044 ± 0.003	1.3 ± 0.1	8.8 ± 0.6

458 nm

Cation	A_1	A_2	A_3	$ au_1$	τ_2
$C_2 mim^+$	-1 ± 0.01	0.42 ± 0.01	0.015 ± 0.001	0.78 ± 0.01	5.2 ± 0.1
$C_4 mim^+$	-1 ± 0.01	0.43 ± 0.01	0.023 ± 0.001	0.84 ± 0.01	5.6 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.40 ± 0.01	0.031 ± 0.001	0.85 ± 0.01	6.3 ± 0.1
$C_8 mim^+$	-1 ± 0.01	0.43 ± 0.04	0.022 ± 0.001	1.17 ± 0.03	6.9 ± 0.2
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.38 ± 0.01	0.039 ± 0.001	0.92 ± 0.02	6.8 ± 0.2
$C_{12}mim^+$	-1 ± 0.01	0.37 ± 0.01	0.044 ± 0.001	0.96 ± 0.02	6.6 ± 0.2

474 nm					
Cation	A_1	A_2	A_3	τ_1	τ_2
$C_2 mim^+$	-1 ± 0.01	0.38 ± 0.02	0.015 ± 0.001	0.70 ± 0.01	3.9 ± 0.1
$C_4 mim^+$	-1 ± 0.01	0.38 ± 0.02	0.022 ± 0.001	0.77 ± 0.01	4.0 ± 0.1
$C_6 mim^+$	-1 ± 0.01	0.34 ± 0.03	0.025 ± 0.001	0.76 ± 0.01	4.7 ± 0.1
$C_8 mim^+$	-1 ± 0.04	0.43 ± 0.03	0.029 ± 0.002	1.03 ± 0.05	4.4 ± 0.3
$C_{10}mim^{\scriptscriptstyle +}$	-1 ± 0.01	0.32 ± 0.03	0.033 ± 0.006	0.81 ± 0.01	4.2 ± 0.1
$C_{12}mim^+$	-1 ± 0.01	0.30 ± 0.05	0.045 ± 0.001	0.79 ± 0.01	4.7 ± 0.1

Table S3. Absorption maximum wavelength, the reaction free energy (ΔG) and the solvent reorganization energy (λ_S) estimated from the absorption spectrum using eq. (3), and the ratio of the calculated back-ET rate from eq. (4) for DMpNA in different ILs.

Cation	λ_{max}	$\Delta G / cm^{-1}$	λ_{S} / cm ⁻¹	ket([C2mim][NTf2])/ket
$C_2 mim^+$	402.1	20990	3260	1.00
$C_4 mim^+$	400.9	21120	3230	1.29
$C_6 mim^+$	400.9	21240	3100	2.02
$C_8 mim^+$	400.4	21320	3060	2.47
$C_{10}mim^{\scriptscriptstyle +}$	399.8	21400	3020	3.04
$C_{12}mim^+$	399.1	21430	3030	3.11

Figure S1 Time profiles of the transient absorption (Δ OD) of pNA at different probe wavelengths in (a)[C₄mim][NTf₂], (b) [C₆mim][NTf₂], (c) [C₈mim][NTf₂], (d) [C₁₀mim][NTf₂], and (e) [C₁₂mim][NTf₂]. The dashed lines indicate Δ OD = 0. The black lines are the results of fitting by a multi-exponential function.

Figure S2. Time profiles of the transient absorption (ΔOD) of DMpNA at different probe wavelengths in (a)[C₄mim][NTf₂], (b) [C₆mim][NTf₂], (c) [C₈mim][NTf₂], (d) [C₁₀mim][NTf₂], and (e) [C₁₂mim][NTf₂]. The dashed lines indicate $\Delta OD = 0$. The black lines are the results of fitting by a multi-exponential function.

Figure S3. Example of the spectral simulation by eq.(3) for DMpNA in $[C_{12}mim][NTf_2]$. The black solid curve is the experimental absorption spectrum and the red curve is the calculated one.

