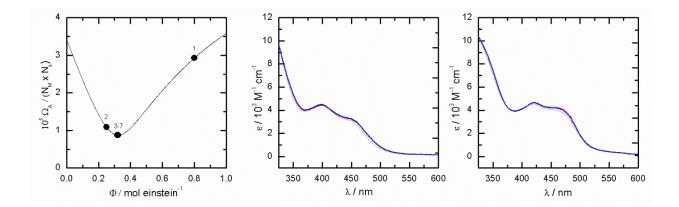
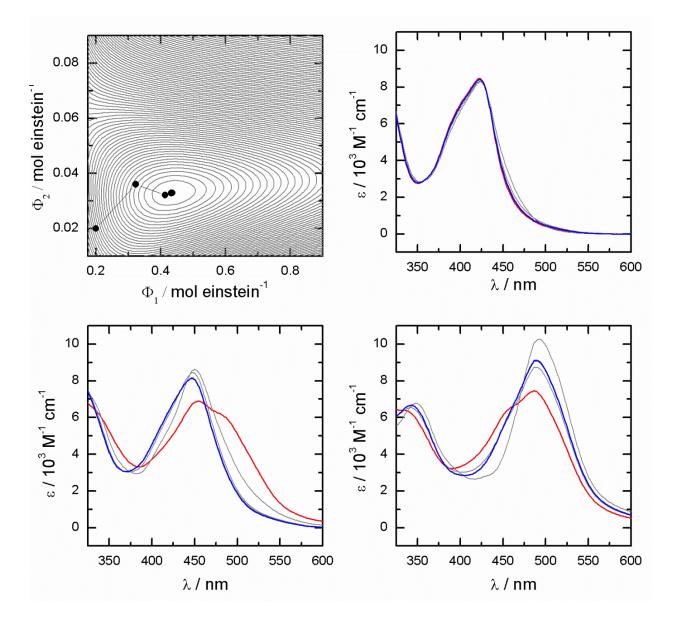

A Chemometric Approach for Determining the Reaction Quantum Yields in Consecutive Photochemical Processes


Juan P. Marcolongo; Juan Schmidt; Natalia Levin; Leonardo D. Slep*

Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, and INQUIMAE, Universidad de Buenos Aires – CONICET, Pabellón 2, 3er piso, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina


Figure S1: Evolution of Ω_A during the iterative minimization procedure with unknown spectra for the colored species in a A \rightarrow B process using $\phi_{\text{initial}} = 0.1$ mol einstein⁻¹ (left). Spectral changes along the iteration steps for the reactant (middle) and product (right). Initial guess colored in red, spectrum after last iteration in blue. $\lambda_{\text{irr}} = 450$ nm, see Figure 2 for the spectral density of the irradiation source.

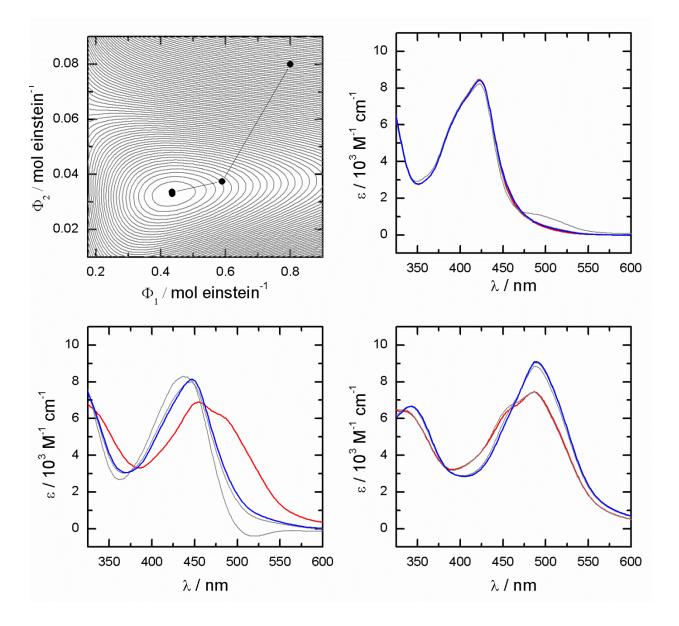

Figure S2: Evolution of Ω_A during the iterative minimization procedure with unknown spectra for the colored species in a A \rightarrow B process using $\phi_{\text{initial}} = 0.8$ mol einstein⁻¹ (left). Spectral changes along the iteration steps for the reactant (middle) and product (right). Initial guess colored in red, spectrum after last iteration in blue. $\lambda_{\text{irr}} = 450$ nm, see Figure 2 for the spectral density of the irradiation source.

Figure S3: Evolution of Ω_A during the iterative minimization procedure with unknown spectra for the colored species in a A \rightarrow B \rightarrow C process. Initial values for $\phi_1 = 0.2$ mol einstein⁻¹ and $\phi_2 = 0.02$ mol einstein⁻¹ (upper left). The contour plot corresponds to $\Delta \Omega_A / (N_M \times N_\lambda) = 1 \times 10^{-5}$. Spectral changes along the iteration steps for the reactant (upper right), intermediate (lower left) and product species (lower right). Initial guess colored in red, spectrum after last iteration in blue. $\lambda_{irr} = 450$ nm, see Figure 5 for the spectral density of the irradiation source.

Figure S4: Evolution of Ω_A during the iterative minimization procedure with unknown spectra for the colored species in a A \rightarrow B \rightarrow C process. Initial values for $\phi_1 = 0.8$ mol einstein⁻¹ and $\phi_2 = 0.08$ mol einstein⁻¹ (upper left). The contour plot corresponds to $\Delta \Omega_A / (N_M \times N_\lambda) = 1 \times 10^{-5}$. Spectral changes along the iteration steps for the reactant (upper right), intermediate (lower left) and product species (lower right). Initial guess colored in red, spectrum after last iteration in blue. $\lambda_{irr} = 450$ nm, see Figure 5 for the spectral density of the irradiation source.

Symbol	Description	Units	Туре
N_M	Number of absorbance measurements for each λ		Scalar
N_{λ}	Number of wavelengths (channels) measured		Scalar
N_S	Number of species involved		Scalar
$\mathbf{A}_{\mathrm{exp}}$	Measured absorbances		$N_M \ge N_\lambda$ array
\mathbf{E}_{exp}	Independently measured spectra of pure species	$M^{-1} cm^{-1}$	$N_S \ge N_\lambda$ array
C _{exp}	$= \mathbf{A}_{exp} \times \mathbf{E}_{exp}^{t} \times \left(\mathbf{E}_{exp} \times \mathbf{E}_{exp}^{t}\right)^{-1}$	М	$N_M \ge N_S \operatorname{array}$
С	Concentration profiles obtained from chemical model	М	$N_M \ge N_S \operatorname{array}$
Ε	$= (C^{t} \times C)^{-1} \times C^{t} \times A_{exp}$	$M^{-1} cm^{-1}$	$N_S \ge N_\lambda$ array
Α	= $C \times E_{exp}$ or = $C \times E$, depending on the case (I, II or III)		$N_M \ge N_\lambda$ array
$arOmega_{C}$	Sum of quadratic residuals between C and C_{exp}	М	Scalar
$arOmega_A$	Sum of quadratic residuals between A and A_{exp}		Scalar
$I_0(\lambda)$	Spectral density of the irradiation source	einstein s ⁻¹ dm ⁻⁴	Scalar
φ	Quantum yield of the process	mol einstein ⁻¹	Scalar

Table S1: List of symbols with units and dimensions involved in the procedure. Gray cells indicate dimensionless quantities.

Extras: Fitting routines and original dataset files.

Requieres Octave ver. 4.2.1 and the Optim-1.5.2 Octave-Forge package (both available free of charge form <u>www.gnu.org/software/octave/</u>).

The compressed file contains two folders with functional routines to be employed in the analysis of absorption profiles recorded from $A \rightarrow B$ and $A \rightarrow B \rightarrow C$ experiments. In both cases dataset files to test the procedures are provided. The data correspond to the actual experiments analyzed and discussed in the main text.