Electronic Supplementary Information

Dissolution DNP using trityl radicals at 7 T field

Fabian Jähnig¹, Grzegorz Kwiatkowski², Alexander Däpp¹, Andreas Hunkeler¹, Beat H. Meier¹, Sebastian Kozerke² and Matthias Ernst¹

¹ Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland ² Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland

1. Effect of Gd³⁺ on DNP Profiles of AH111501 samples

Figure S1: Upper panel shows the DNP profile for samples with increasing AH111501 radical concentration (15 mM, red diamonds to 30 mM, magenta triangles) as plotted in Fig. 6 in the main text. Blue crosses represent 26 mM concentration. Lower panel shows the effect of the addition of Gd3+ to a sample with 26 mM radical concentration (blue crosses). Red diamonds $- 1 \text{ mM Gd}^{3+}$ and magenta triangles $- 2 \text{ mM Gd}^{3+}$.

2. Effect of Gd³⁺ on DNP Profiles of OX063 samples

Figure S2: Upper panel shows the DNP profile for samples with increasing OX063 radical concentration (15 mM, red diamonds to 30 mM, magenta triangles) as plotted in Fig. 7 in the main text. Blue crosses represent 26 mM concentration. Lower panel shows the effect of the addition of Gd3+ to a sample with 26 mM radical concentration (blue crosses). Red diamonds $- 1 \text{ mM Gd}^{3+}$ and magenta triangles $- 2 \text{ mM Gd}^{3+}$.