Supporting Information

First-principle study of Ga-vacancy induced magnetism in β-Ga₂O₃

Ya Yang^a, Jihua Zhang^b, Shunbo Hu^c, Yabei Wu^a, Jincang Zhang^{a,c}, Wei Ren^{a,c,*}, Shixun Cao^{a,c,*}

^{a.} Department of Physics, and International Center of Quantum and Molecular Structures, Materials Genome Institute, Shanghai University, Shanghai 200444, China.

^{b.} Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.

^{c.} Shanghai Materials Genome Institute, Shanghai, 200444, China. *renwei@shu.edu.cn; sxcao@shu.edu.cn

Table-S1. The structure information of relaxed β -Ga₂O₃:

Atom	Х	у	Z			
Ga ^{tetra}	0.09146	0	0.80094			
Ga ^{octa}	0.16217	0.50000	0.55585			
01	0.17776	0	0.11232			
02	0.16870	0	0.55585			
03	0.99952	0.50000	0.24872			
C2/m, a = 12.214 Å, b = 3.037 Å, c = 5.798 Å and β = 103.830°						

Figure-S1: Total DOS of pure β -Ga₂O₃ with U_{Ga-d} = 7.0 eV, U_{Ga-s} = 10.0 eV, U_{Ga-s} = 20.0 eV, U_{Ga-s} = 30.0 eV and without U. In the case of using GGA+U method, the U_{O-p} = 8.5 eV. It is noteworthy that once the U_{Ga-s} is larger than 30.0 eV, the calculation is very hard to be converged.

Figure-S2: Projected DOS of pure β -Ga₂O₃ with U_{Ga-s} = 30.0 eV (U_{O-p} = 8.5 eV) and without U. In the case without U, it can be seen that the Ga-4s (black line) and the O-2p (green line) are dominating in the bottom of conduction band. In the case of U_{Ga-s} = 30.0 eV and U_{O-p} = 8.5 eV, the corresponding states are suppressed to widen the band gap.

Figure-S3 Calculated TDOS of pure β -Ga₂O₃ using HSE06 functional with a screening parameter $\omega = 0.2$ Å⁻¹ and a big mixing parameter α ($\alpha = 0.45$) for the short-range Hartree-Fock exchange instead of the commonly used value of 0.25 for better fitting the experimental band gaps.

Figure-S4 Calculated TDOS of V^{octa} Ga vacancy in various charge states using HSE06 functional with a screening parameter $\omega = 0.2 \text{\AA}^{-1}$ and a big mixing parameter α ($\alpha = 0.45$). The local moments induced by the V^{octa} defects in 0, -1, -2, and -3 charge states are 2.457, 1.619, 0.862, and 0 µ_B, respectively.

Figure-S5 Calculated TDOS of V^{tetra} Ga vacancy in various charge states using HSE06 functional with a screening parameter $\omega = 0.2 \text{\AA}^{-1}$ and a big mixing parameter α ($\alpha = 0.45$). The local moments induced by the V^{octa} defects in 0, -1, -2, and -3 charge states are 0.815, 0, 0.859, and 0 µ_B, respectively.

	Magnetic moments (µ _B)					
Vocta	without U	$U_{Ga-d} = 7.0$	$U_{Ga-s} = 10.0$	$U_{Ga-s} = 20.0$	$U_{Ga-s} = 30.0$	
		eV	eV	eV	eV	
neutral	2.018	2.014	2.011	2.021	2.034	
-1	1.337	1.335	1.335	1.342	1.351	
-2	0.680	0.680	0.679	0.683	0.687	
-3	0	0	0	0	0	

Table-S2. The magnetic moments of Vocta and Vtetra with different U.

	Magnetic moments (µ _B)					
V ^{tetra}	without U	$U_{Ga-d} = 7.0$	$U_{Ga-s} = 10.0$	$U_{Ga-s} = 20.0$	$U_{Ga-s} = 30.0$	
		eV	eV	eV	eV	
neutral	0.585	0.679	0.679	0.681	0.685	
-1	0	0	0	0	0	
-2	0.525	0.625	0.618	0.636	0.690	
-3	0	0	0	0	0	