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1. Rigorously analytic solution of the relaxation time and the residual error 

due to expansion. 

Inserting Eq. (14) into Eq. (15), it yields the integral form of the relaxation time τk as 

 

 
 

   
 

2

' 2' '

1 0 '2 2

11

2 2 2 2'

1 '2 2

'

2 2

11

321 1
1 cos cos d '

2 22

3
cos cos

cos sin sin 2 2
1

2 2 sin

B

F t t FB

F t F t

k T
S E

C

S E
k T

C





   
   

 

 
  

       

     



     
       
      

 
       

     


k kk k k k

k k

k k

k k

k k

k k k kk

k

υ υ
k

υ

 

   
 

 

2

'

2 2 2 2'

1 '2

'

2 2 2

11 '

2

11

sin

3
(1 sin ) cos cos

cos sin sin 2 2
1

2 1 2 sin 1 sin

2

F t

t

t tB

F t t t

B

F

d

S E
k Tk

d
C

k Tk
A

C




  

 
    

     


      

 







 
 
 



  
            

      

 





k

k

k k

k k k

k k k k

k

k k

 

                                                                                ,(S1) 

where the integral item A is solved to be 
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This rigorous analytic result is complicated. By expanding the result to the second-order terms of 

the tilting factor αt, an approximate result with a much simpler expression is obtained as Eq. (17). 

A comparison between the rigorous and approximate expressions is provided in Fig. S1 based on 

the parameters of 8B-Pmmn Borophene. It demonstrates that the difference (residual error) is 

small. More importantly, the approximate expression overestimates at some θk while 

underestimates at others, so the discrepancy would be even reduced when an integral on θk is 

conducted to give the carrier mobility [see Fig. 5(b)]. 

 



 

 

Figure S1. The integral A in the expression of τk as a function of αt under various θk. Red 

lines are rigorous analytic result of Eq. (S2), while blue lines are the approximate result of 

expanding to the second-order terms of αt as given in Eq. (17). S1 = 0.43 and Eβ = 3.04 were 

adopted to mimic 8B-Pmmn according to Eq. (33) and Table 1. Based on the movement 

direction of Dirac point under strain, 0 / 2  . 

 

2. Detailed deduction on the carrier mobility of tilted elliptic cone. 

With the effective Hamiltonian Eq. (24) for tilted elliptic Dirac cones and the transformation 

Eq. (28), the eigenfunction can be written as 



 

  
 








 


1

exp

2

1 ~
k

k




i
,                      (S3) 

where 
k
~  is the angle of k

~
. The corresponding carrier velocity is 

  
t~F~F sin,cos  

kkkυ yx  .                      (S4) 

Following a similar way to the case of tilted cone, the relaxation time is deduced to be 
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where    
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, then Eq. (S5) becomes  

 

 

2

2 2

2 2 2 2 2
11 F F 1 0

2

cos cos sin sin sin sin
1

( cos ) (sin )
1

32 (1 sin ) cos cos
2 2

(1 sin )

t t

t

B

x y t

t

c

c
k T k

C S E

d



       

  

         


 

  









    
 

   
   

     
  





k k k k k k

k k

k k
k

k k k

k

k

 

.(S6) 

The integral can be expanded to the second-order of the tilting factor ( t
t

Fy





 ) to get an 

analytic form:   
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with denotation  
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where 
k
~  is abbreviated into  for simplicity. The zero-order term of the integral is 

2 2

1 2
2

E


(S ), being consistent with the result of the untilted case.[1] If c=1, then the above 

results return to that for the tilted cones in Eq. (17).  

We now deduce the mobility formula of tilted elliptic cones. Insert Eq. (S9) into the mobility 

equation 
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we have 
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at the neutrality point (NP), where 
(0)

,NPx  and 
(0)

,NPy  are given in Eq. (31). We now need to 

solve 
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The zero-order term of αt in (S11, S12) is C0=1 and D0=1. The odd-term is zero due to the 

symmetry. The second-order term of αt is  
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In tilted circular cones with c=1, C2 and D2 becomes  
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The above results Eqs. (S13, S14) are only a little different with the formula of tilted circular 

cones Eq. (S15). We introduce notation 
x y   and substitute the value of 8B-Pmmn, then 



 

the difference between Eqs. (S13, S14) and Eq. (S15) was evaluated as a function of c in Fig. S2. 

Results of 8B-Pmmn and 2BH-Pmmn based on their realistic c are also listed in Table S1. We 

can see that the difference is small, verifying that the improvement of the accuracy is limited if 

we use a complicated form of Eqs. (S13, S14) instead of the approximated Eq. (S15). 

 

 

Figure S2. Comparison between Eqs. (S13, S14) and Eq. (S15). 56.47 10 m/s   , S1 = 0.43 

and Eβ = 3.04 were adopted to mimic 8B-Pmmn according to Eq. (33) and Table 1. Black lines 

are the results using Eq. (S15), red and blue lines represent the results making 0cos 1    

respectively by using Eqs. (S13, S14). 

 

 

 



 

Table S1. Results of carrier mobilities of 8B-Pmmn and 2BH-Pmmn calculated with two 

methods. 

System 8B-Pmmn 2BH-Pmmn 

μNP,x/y   (105cm2/V/s)a 14.8, 28.4 4.48, 13.4 

μNP,x/y   (105cm2/V/s)b  14.6, 28.6 4.45, 13.4 

μdoped,x/y  (105cm2/V/s)a 7.72, 14.9 0.78, 2.34 

μdoped,x/y  (105cm2/V/s)b 7.63, 14.9 0.77, 2.34 

a calculated with Eq. (S15) as its second-item. 

b calculated with Eqs. (S13, S14) as the second-item. 

 

3. Movement of Dirac cones under shear strains for 8B-Pmmn and 

2BH-Pmmn. 

After applying shear strains, we could do the 3D-fit near the original unstrained Dirac point 

and obtain the position of new Dirac cones. The results are summarized in Fig. S3. We could 

find that the Dirac point all moves perpendicular to the -X line under shear strains in both two 

systems (8B-Pmmn and 2BH-Pmmn), verifying our analysis. They are protected by the 

symmetry. 

 



 

 

Figure S3. Movements of Dirac point under shear strains in (a) 8B-Pmmn and (b) 2BH-Pmmn. 

Dirac point is trajectoryed in the (kx, ky) plane. ε=±0.01, 0.02, 0.04 was used. The position of 

unstrained Dirac point is marked with symbol “+” in figure. 
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