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1. Rigorously analytic solution of the relaxation time and the residual error
due to expansion.

Inserting Eq. (14) into Eq. (15), it yields the integral form of the relaxation time k as
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where the integral item 4 is solved to be
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This rigorous analytic result is complicated. By expanding the result to the second-order terms of
the tilting factor ay, an approximate result with a much simpler expression is obtained as Eq. (17).
A comparison between the rigorous and approximate expressions is provided in Fig. S1 based on
the parameters of 8B-Pmmn Borophene. It demonstrates that the difference (residual error) is
small. More importantly, the approximate expression overestimates at some 6k while
underestimates at others, so the discrepancy would be even reduced when an integral on 6k is

conducted to give the carrier mobility [see Fig. 5(b)].
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Figure S1. The integral A in the expression of 7k as a function of ar under various 6k. Red
lines are rigorous analytic result of Eq. (S2), while blue lines are the approximate result of
expanding to the second-order terms of a; as given in Eq. (17). S1= 0.43 and Esz= 3.04 were
adopted to mimic 8B-Pmmn according to Eq. (33) and Table 1. Based on the movement

direction of Dirac point under strain, 6, =7 /2.

2. Detailed deduction on the carrier mobility of tilted elliptic cone.

With the effective Hamiltonian Eq. (24) for tilted elliptic Dirac cones and the transformation

Eq. (28), the eigenfunction can be written as
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where @ is the angle of K. The corresponding carrier velocity is
v, = (UFX CcoSE;, v, Sin6k J_rut) . (S4)

Following a similar way to the case of tilted cone, the relaxation time is deduced to be
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The integral can be expanded to the second-order of the tilting factor (¢, Ei) to get an
Fy

analytic form:
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with denotation
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where @ is abbreviated into & for simplicity. The zero-order term of the integral is
%(Sf +2E), being consistent with the result of the untilted case.l'l If c=1, then the above
results return to that for the tilted cones in Eq. (17).

We now deduce the mobility formula of tilted elliptic cones. Insert Eq. (S9) into the mobility
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at the neutrality point (NP), where ,uf?\,P and ,U%P are given in Eq. (31). We now need to

solve
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and

The zero-order term of o in (S11, S12) is Co=1 and Do=1. The odd-term is zero due to the
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In tilted circular cones with c=1, C> and D, becomes
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The above results Eqs. (S13, S14) are only a little different with the formula of tilted circular

cones Eq. (S15). We introduce notation L= ,/uxuy and substitute the value of 8B-Pmmn, then



the difference between Eqs. (S13, S14) and Eq. (S15) was evaluated as a function of ¢ in Fig. S2.
Results of 8B-Pmmn and 2BH-Pmmn based on their realistic ¢ are also listed in Table S1. We
can see that the difference is small, verifying that the improvement of the accuracy is limited if

we use a complicated form of Egs. (S13, S14) instead of the approximated Eq. (S15).
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Figure S2. Comparison between Egs. (S13, S14) and Eq. (S15). v =6.47x10°m/s, Si = 0.43
and Eg= 3.04 were adopted to mimic 8B-Pmmn according to Eq. (33) and Table 1. Black lines

are the results using Eq. (S15), red and blue lines represent the results making cosé, ==+1

respectively by using Egs. (S13, S14).



Table S1. Results of carrier mobilities of 8B-Pmmn and 2BH-Pmmn calculated with two

methods.

System 8B-Pmmn  2BH-Pmmn
Unpxty  (10°cm?/V/s)? 14.8,28.4 4.48,13.4
unpxy  (105cmV/s)P 14.6, 28.6 4.45,13.4
Udopedxly  (105cm?/V/s)? 7.72,14.9 0.78,2.34
Udopedxiy  (10%cm?/V//s)P 7.63,14.9 0.77,2.34

4calculated with Eqg. (S15) as its second-item.

b calculated with Egs. (S13, S14) as the second-item.

3. Movement of Dirac cones under shear strains for 8B-Pmmn and

2BH-Pmmn.

After applying shear strains, we could do the 3D-fit near the original unstrained Dirac point
and obtain the position of new Dirac cones. The results are summarized in Fig. S3. We could
find that the Dirac point all moves perpendicular to the T'-X line under shear strains in both two
systems (8B-Pmmn and 2BH-Pmmn), verifying our analysis. They are protected by the

symmetry.
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Figure S3. Movements of Dirac point under shear strains in (a) 8B-Pmmn and (b) 2BH-Pmmn.

Dirac point is trajectoryed in the (kx, ky) plane. e=40.01, 0.02, 0.04 was used. The position of

unstrained Dirac point is marked with symbol “+” in figure.
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