Prediction of the hypervalent molecules: Investigation on the M_nC (M=Li, Na, K, Rb and Cs; *n*=1-8) clusters

Peng Shao,^a Bo-Le Chen,^{bc} Li-Ping Ding,^{*d} Dao-Bin Luo^a, Cheng Lu^{*b} and Xiao-Yu Kuang^c

^aDepartment of Physics, Shaanxi University of Science & Technology, Xi'an 710021, China

^bDepartment of Physics, Nanyang Normal University, Nanyang, 473061, China

^cInstitute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China

^dDepartment of Optoelectronic Science & Technology, College of Elecrical & Information

Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China

^{*}Correspondence to: Li-Ping Ding, Shaanxi University of Science & Technology, Xi'an 710021, China. E-mail address: scu_ding@163.com (Li-Ping Ding), lucheng@calypso.cn (Cheng Lu)

Cluster	Average distance (Å)	Frequency (cm ⁻¹)
	1 051	148 520 722
$L_{12}C$	1.931	140, 337, 733
	1.910	107, 147, 339, 743
	1.000	69, 155, 190, 192, 207, 508, 557, 654, 657 50, 200, 224, 260, 205, 402, 517, 624, 674
$L_{15}C$	1.941	50, 209, 224, 269, 295, 492, 516, 634, 674
$L_{16}C$	1.989	85, 211, 240, 285, 290, 465, 551, 575, 711
$L_{17}C$	1.991	100, 200, 234, 237, 296, 329, 440, 495, 004, 031 60, 124, 126, 188, 212, 222, 207, 267, 585, 627
LI8C	1.990	09, 124, 150, 188, 212, 222, 507, 507, 585, 657
Na ₂ C	2.376	98, 231, 490
Na ₃ C	2.386	50, 122, 222, 414
Na ₄ C	2.284	58, 60, 79, 239, 419, 420
Na ₅ C	2.406	46, 83, 113, 122, 197, 213, 300, 420
Na ₆ C	2.409	75, 109, 131, 193, 220, 432,
Na ₇ C	2.419	35, 66, 74, 106, 110, 124, 135, 190, 216, 416
Na ₈ C	2.409	11, 35, 40, 72, 75, 108, 109, 130, 149, 219, 419
V C	2.726	99 142 221
K_2C	2.720	88, 143, 321
K ₃ C	2.380	23, 64, 132, 221, 325
K ₄ C	2.659	58, 60, 154, 287
K ₅ C	2.814	14, 57, 97, 112, 133, 257, 284
$K_{6}C$	2.872	38 50 51 74 78 87 95 122 246 276
K ₇ C	2.901	6 10 20 25 50 53 80 85 98 108 134 201
K 8C	2.809	0, 19, 20, 23, 30, 33, 80, 83, 98, 108, 134, 291
Rb ₂ C	2.628	20, 32, 304
Rb ₃ C	3.082	16, 36, 38, 75, 182, 275
Rb ₄ C	3.150	9, 25, 29, 35, 47, 72, 136, 162, 248
Rb ₅ C	3.163	17, 28, 31, 49, 63, 77, 189, 249,
Rb ₆ C	3.192	30, 44, 58, 64, 79, 262
Rb ₇ C	3.247	16, 25, 28, 30, 39, 45, 50, 51, 53, 71, 207, 226
Rb ₈ C	3.180	5, 10, 12, 28, 44, 51, 56, 57, 58, 80, 253, 255
$C \in C$	2 2/7	21 197 101
$C_{s_2}C$	3.207	51, 180, 191 12 26 42 55 149 225
$C_{3}C$	3.293 2.279	12, 20, 42, 55, 148, 255
$C_{4}C$	3.3/8 2.417	/, 1/, 20, 2/, 30, 51, 120, 150, 212 9 12 21 22 22 27 40 145 170
$C_{5}C$	3.41/ 2.616	0, 13, 31, 32, 33, 37, 49, 143, 170
$C_{5}C$	3.010	12, 13, 10, 22, 23, 23, 34, 45, 48, 104, 139, 170
Cs_7C	3.550	5, 11, 15, 18, 21, 24, 32, 35, 39, 48, 157, 174, 185
Cs_8C	3.569	10, 12, 20, 22, 25, 29, 32, 35, 47, 147, 156, 164

Table S1 The average distances of direct M-C bond and the vibration frequencies with most IR intensities of M_nC (M=Li, Na, K, Rb and Cs; *n*=1-8) clusters.

Isomers	C-Li2	C-Li3	C-Li4	C-Li5	C-Li6	C-Li7	C-Li8	C-Li9
Li ₂ C	1.210	1.210						
Li ₃ C	1.028	1.028	1.028					
Li ₄ C	1.019	1.019	1.019	1.019				
Li ₅ C	0.819	0.819	0.819	0.819	0.840			
Li ₆ C	0.712	0.712	0.712	0.712	0.712	0.712		
Li ₇ C	0.649	0.727	0.727	0.649	0.727	0.649	0.089	
Li ₈ C	0.687	0.687	0.687	0.687	0.687	0.108	0.687	0.108

Table S2 Wiberg bond order between carbon and alkali atoms for the ground state $\text{Li}_n \text{C}$ (*n*=1-8) clusters. The atom numeration to identify Li atoms is shown in Fig. S5.

Table S3 Wiberg bond order between carbon and alkali atoms for the ground state Na_nC (*n*=1-8) clusters. The atom numeration to identify Na atoms is shown in Fig. S5.

Isomers	C-Na2	C-Na3	C-Na4	C-Na5	C-Na6	C-Na7	C-Na8	C-Na9
Na ₂ C	1.098	1.098						
Na ₃ C	0.708	0.709	0.740					
Na ₄ C	0.983	0.983	0.983	0.983				
Na ₅ C	0.713	0.713	0.693	0.713	0.713			
Na ₆ C	0.689	0.689	0.689	0.689	0.689	0.689		
Na ₇ C	0.625	0.108	0.649	0.649	0.625	0.649	0.649	
Na ₈ C	0.133	0.674	0.000	0.646	0.646	0.674	0.646	0.674

Table S4 Wiberg bond order between carbon and alkali atoms for the ground state K_nC (*n*=1-8) clusters. The atom numeration to identify K atoms is shown in Fig. S5.

Isomers	C-K2	C-K3	C-K4	C-K5	C-K6	C-K7	C-K8	С-К9
K_2C	0.904	0.904						
K ₃ C	0.821	0.845	0.935					
K_4C	0.920	0.920	0.920	0.920				
K ₅ C	0.623	0.623	0.623	0.623	0.652			
K ₆ C	0.634	0.634	0.634	0.634	0.634	0.634		
K ₇ C	0.068	0.490	0.490	0.490	0.471	0.471	0.471	
K ₈ C	0.000	0.628	0.592	0.622	0.586	0.592	0.628	0.115

Isomers	C-Rb2	C-Rb3	C-Rb4	C-Rb5	C-Rb6	C-Rb7	C-Rb8	C-Rb9
Rb ₂ C	0.968	0.968						
Rb ₃ C	0.397	0.434	0.434					
Rb ₄ C	0.397	0.352	0.397	0.352				
Rb ₅ C	0.570	0.570	0.570	0.570	0.481			
Rb ₆ C	0.641	0.641	0.641	0.641	0.641	0.641		
Rb ₇ C	0.480	0.480	0.067	0.480	0.480	0.480	0.480	
Rb ₈ C	0.588	0.128	0.588	0.638	0.583	0.638	0.056	0.632

Table S5 Wiberg bond order between carbon and alkali atoms for the ground state Rb_nC (*n*=1-8) clusters. The atom numeration to identify Rb atoms is shown in Fig. S5.

Table S6 Wiberg bond order between carbon and alkali atoms for the ground state Cs_nC (*n*=1-8) clusters. The atom numeration to identify Cs atoms is shown in Fig. S5.

Isomers	C-Cs2	C-Cs3	C-Cs4	C-Cs5	C-Cs6	C-Cs7	C-Cs8	C-Cs9
Cs_2C	0.896	0.896						
Cs ₃ C	0.407	0.379	0.379					
Cs ₄ C	0.396	0.369	0.333	0.333				
Cs ₅ C	0.602	0.487	0.602	0.602	0.602			
Cs ₆ C	0.250	0.250	0.316	0.316	0.251	0.251		
Cs ₇ C	0.053	0.484	0.500	0.500	0.500	0.484	0.478	
Cs ₈ C	0.000	0.293	0.266	0.235	0.000	0.293	0.293	0.293

Fig. S1 The ground state structures and second low-lying isomers of Li_nC (a), Na_nC (b), K_nC (c), Rb_nC (d) and Cs_nC (e) (*n*=1-8) clusters. The grey, pink, purple, green, blue and brown spheres represent the C, Li, Na, K, Rb and Cs atoms, respectively.

$2a.1; C_{2\nu} (0.00)$	3a.1; $C_{2\nu}$ (0.00)	4a.1; T_d (0.00)	5a.1; $C_{4\nu}$ (0.00)	6a.1; <i>O_h</i> (0.00)	7a.1; $C_{3\nu}$ (0.00)	8a.1; <i>D</i> _{2d} (0.00)
0-0-0						À
2a.2; $C_{2\nu}$ (1.04)	$3a.2; C_s$ (0.08)	4a.2; C_s (0.25)	5a.2; D_{3h} (0.01)	6a.2; C _{3v} (1.49)	7a.2; $C_{2\nu}$ (1.56)	8a.2; $C_{2\nu}$ (0.05)
0=0=0						
$2b.1; C_{2\nu} (0.00)$	3b.1; C _s (0.00)	4b.1; <i>D</i> _{2d} (0.00)	5b.1; $C_{4\nu}$ (0.00)	6b.1; <i>O_h</i> (0.00)	7b.1; C _{3v} (0.00)	8b.1; <i>C</i> ₃ (0.00)
(1.13)	36.2; C _s (0.08)	$\begin{array}{c} \textbf{4b.2; } D_{2d} \\ \textbf{(0.01)} \end{array}$	(0.01)	(0.98)	(0.11)	(0.08)
0-0-0						
$2c.1; C_{2v} (0.00)$	3c.1; C _s (0.00)	4c.1; T_d (0.00)	5c.1; C_{4v} (0.00)	$6c.1; O_h$ (0.00)	7c.1; <i>C</i> ₁ (0.00)	8c.1; C _s (0.00)
0-0-0						
$\begin{array}{c} 2c.2; C_{2\nu} \\ (1.96) \end{array}$	3c.2; C _s (0.68)	4c.2; T_d (0.03)	5c.2; C_{4v} (0.09)	$\begin{array}{c} 6c.2; C_{2v} \\ (0.02) \end{array}$	7c.2; C ₁ (0.19)	8c.2; C _s (0.07)
••••						
2d.1; $C_{2\nu}$ (0.00)	3d.1; C _{2v} (0.00)	4d.1; C ₂ (0.00)	5d.1; $C_{4\nu}$ (0.00)	6d.1; <i>O_h</i> (0.00)	7d.1; C _{3v} (0.00)	8d.1; C _s (0.00)
2d.2; $C_{2\nu}$ (2.13)	3d.2; $C_{2\nu}$ (0.13)	4d.2; C ₂ (0.95)	5d.2; $C_{4\nu}$ (0.32)	$6d.2; O_h$ (0.03)	7d.2; C _{3v} (0.11)	8d.2; <i>C_s</i> (0.13)
						V
2e.1; $C_{2\nu}$ (0.00)	3e.1; $C_{2\nu}$ (0.00)	4e.1; $C_{2\nu}$ (0.00)	5e.1; C_{4v} (0.00)	$\begin{array}{c} 6e.1; C_{2h} \\ (0.00) \end{array}$	7e.1; C ₁ (0.00)	8e.1; C_{2v} (0.00)
<u></u>						X
2e.1; C_{2v} (1.67)	3e.1; $C_{2\nu}$ (0.10)	4e.1; $C_{2\nu}$ (1.23)	5e.1; C _{4v} (0.24)	6e.1; C_{2h} (0.26)	7e.1; C ₁ (0.16)	8e.1; $C_{2\nu}$ (0.91)

Fig. S2 Contour maps of the HOMOs of the ground state M_nC (M=Li, Na and K; *n*=3, 7-8) clusters.

Fig. S3 Contour maps of the HOMOs of the ground state M_nC (M= Rb and Cs; *n*=1-8) clusters.

Fig. S4 The atom numeration to identify alkali atomss for the ground state structures of $\text{Li}_n C$ (a), $\text{Na}_n C$ (b), $K_n C$ (c), $\text{Rb}_n C$ (d) and $\text{Cs}_n C$ (e) (*n*=1-8) clusters.

Fig. S5 Electron localization function plots of the ground state M_nC (M=Li, Na and K; n=2-4, 7 and 8) clusters.