Supporting information

The Effect of Defects on the Catalytic Activity of Single Au Atom Supported on Carbon Nanotube and Reaction Mechanism for CO Oxidation

Sajjad Ali,^{ab} Tian Fu Liu,^{ac} Zan Lian,^{ac} Bo Li^{*a} and Dang Sheng Su^a

^aShenyang National Laboratory for Materials Science, Institute of Metal Research,

Chinese Academy of Sciences 72 Wenhua Road, Shenyang 110016, China

^bUniversity of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan

District, Beijing 100049, China

^cSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

Table S1. The structure information and atom number in the cell of the investigated carbon nanotubes.

System	Number of atoms			Diameter(Å)	C-C bond	Angles
					length (Å)	degree
	m-	di-	SW-			
	SWCNT	SWCNT	SWCNT/pristine			
(8,0)	95	94	96	6.41	1.42 and	117.2° and
SWCNT					1.44	119.4°
(5,5) SWCNT	99	98	100	6.87	1.43	118.9°

Exchange	Au/SWCNT	Au/m-SWCNT	Au/di-SWCNT	Au/SW-SWCNT
functionals	E _b	E _b	E _b	E _b
RPBE	-0.38	-2.74	-0.176	-0.74
VDW_DF	-0.63	-2.77	-0.24	-1.273
VDW_DF2	-0.66	-2.53	-0.34	-1.274

Table S2. The comparison of binding energy of Au in different exchange correlation functions

Fig. S1 Optimized geometry of CO on pristine armchair (5,5) and zigzag (5,5) SWCNT.

Fig. S2 Spin-polarized partial density of states (PDOS) projected onto C-O (left panel) and O₁-O₂ (right panel) on the Au/m-SWCNT (Fig. 6b), together with the d-projected PDOS of the Au atom in the IS, TS, and MS. Black dashed curve, gas-phase CO or O₂ ;black solid curve, C-O or O1-O2 on Au/m-SWCNT; red curve, d-projected PDOS of the Au atom. The Fermi level is set to zero. The spin density is defined as the difference between spin-up and spin-down electron densities, ρ_{\uparrow} - ρ_{\downarrow} .

Fig. S3 Au, CO and O₂ adsorption on; (a) Au/SWCNT (5,5) (a,c,d); (b) Au/m-SWCNT (5,5) (b,e,f); E_b represent binding energy in eV. Only a part of SWCNTs are shown.

Fig. S4 Au and CO adsorption on Au/SW-SWCNT (8,0) with different binding sites; E_b represent binding energy in eV. The interatomic distances are given in Å. Only a part of SWCNTs are shown.

Fig. S5 CO_2 and O adsorption on; (a) Au/m-SWCNT (8,0) (a, c); (b) Au/di-SWCNT (8,0) (b, d); E_b represent binding energy in eV. The interatomic distances are given in Å. Only a part of SWCNTs are shown.

Fig. S6. Reaction pathways of CO on Au supported m-SWCNT. The Schematic energy profile corresponding to local configurations along the minimum-energy pathway via the TER 2CO + $O_2 \rightarrow OOCOCO \rightarrow 2CO_2$ route. All energies are given with respect to the reference energy, i.e., the sum of energies of the Au/m-SWCNT and individual CO and O_2 molecules.

Magnetic moment	Au/SWCNT	Au/m-SWCNT	Au/di-SWCNT	Au/SW-SWCNT
M Au (μ _β)	0.463	0.095	0.103	0.291
Μ C1 (μ _в)	0.004	0.061	0.242	0.044
M C2 (μ _в)	0.052	0.202	0.002	0.027
M C3 (μ _в)	0.053	0.061	0.028	0.016
M C4 (μ _в)	0.060	-	0.182	0.192

Table S3. The magnetic moment of Au (M Au) and C (M C) at defected sites of SWCNT are summarized.

Table S4. Structural parameters for the intermediate states (IS, TS, MS, and FS) along the MEP for the CO oxidation on the Au/m-SWCNT: (a) $CO + O_2 \rightarrow OOCO \rightarrow CO_2 + O$; (b) $CO + O \rightarrow CO_2$

(a)	IS	TS	MS	FS	
d ₍₀₁₋₀₂₎	1.29	1.32	1.51	3.38	
d _(C-O)	1.16	1.16	1.22	1.18	
d _(C-Au)	2.01	2.09	2.08	4.08	
d _(O2-Au)	2.31	2.18	2.13	1.84	
δq [Au]	+0.53	+0.58	+0.59	+0.67	
δq [C+O]	1.05+(-1.06) = 0.01	1.09+(-1.07) = 0.02	1.4+(-1.1) = 0.28	2.1+(-1.1) = 1.0	
δq [O ₂ +O ₁]	-0.15+(-0.22) = -0.37	-1.1+(-0.7) = -1.8	-0.57+(-0.41) = -0.98	-0.8, -1.06	
(b)	IS	TS		FS	
d _(O-C)	3.13	1.7		1.18	
d _(O-Au)	1.84	1.92		3.34	
d _(C-O1)	1.15	1.17		1.18	
δq [Au]	+0.67	+0.63		+0.34	
δq [C+O ₁]	1.1+(-1.12) =	-0.02 1.14+(-1.13) = 0.01		2.1+(-1.05) = 1.05	
δq [O]	-0.69	-0.68	-0.68		

The units of the bond distance and charge transfer are Å and e respectively. The structure of IS, TS, MS and FS are displayed in Fig. 6b. Charge transfer is calculated using the Bader charge analysis. Negative (positive) δq denotes charge gain (loss).