Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Phase diagrams in the LiBH₄-NaBH₄-KBH₄ system

Erika M. Dematteis, a)b) Eugenio R. Pinatel, a) Marta Corno, a) Torben R. Jensen b) and Marcello Bariccoa)*

^{a)}Department of Chemistry and Inter-departmental Center Nanostructured Interfaces and Surfaces (NIS)
University of Turin, Via Pietro Giuria 7, 10125 Torino, Italy

^{b)}Department of Chemistry, Center for Materials Crystallography (CMC) and Interdisciplinary Nanoscience Center (iNANO) Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark

SUPPLEMENTARY INFORMATION

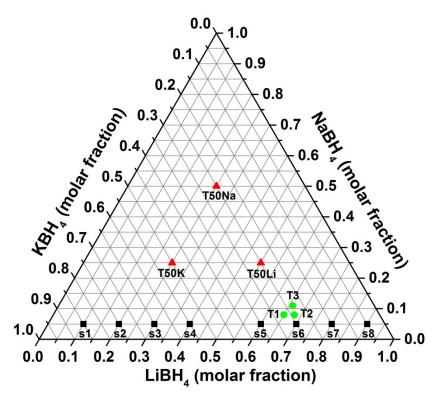


Figure S1 – Investigated compositions in the ternary system. For more details, see Table 1.

 $Table \ S1-List \ and \ details \ of \ synchrotron \ facilities.$

Facility	Beam Line	Wavelenght (Å)	Exposure Time (s)	Sample
MAXLAB laboratories, MAX-II	I711	1711 0.9938	30	T50Li,
Lund, Sweden				T50Na, T50K
Dimond Light Source	I11	0.8259	5	T1
Didcot, UK				
DESY	PETRA III	0.2072	5	T2
Hamburg, Germany				
ESRF	BM01	0.7129	5	Т3
Grenoble, France				

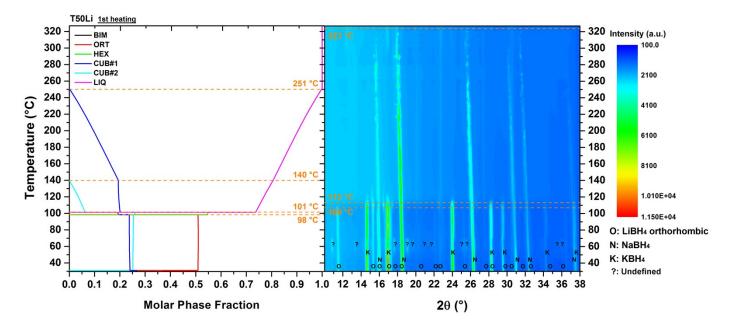


Figure S2 - Amount of calculated phases (CALPHAD, left) and SR-PXD (right) of T50Li, 0.50LiBH₄-0.25NaBH₄-0.25KBH₄ (λ = 0.9938 Å, Δ T/ Δ t = 5 °C/min, argon atmosphere).

Polymorphic transition of LiBH₄ is observed at 109 °C (calculated temperature 98 °C), followed by eutectic melting at 112 °C (calculated temperature 101 °C). At 140 °C the calculations reveals the complete melting of the cubic phase two (KBH₄) that is no more visible in the *in-situ* data after the eutectic melting. Experimental temperatures are higher with respect to calculated one probably because of kinetic reasons. Liquidus temperature is recorded at 323 °C (calculated temperature 251 °C).

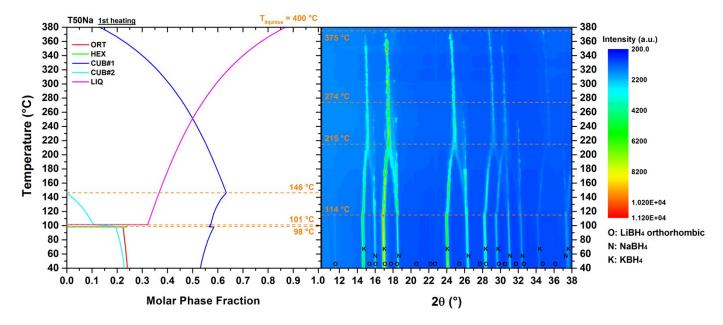


Figure S3 - Amount of calculated phases (CALPHAD, left) and SR-PXD (right) of T50Na, $0.25 LiBH_4$ - $0.50 NaBH_4$ - $0.25 KBH_4$ ($\lambda = 0.9938$ Å, $\Delta T/\Delta t = 5$ °C/min, argon atmosphere).

At 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively, but they are not clearly revealed by the *in-situ* investigation. At 185 °C (174 °C calculated temperature), the cubic phase two (KBH₄) disappear because of the formation of a single-phase cubic solution. In the experiment, the solid solution between NaBH₄ and KBH₄ starts to form at 114 °C and one phase solid solution is observed at 215 °C. Liquidus temperature is recorded at 375 °C (calculated temperature 400 °C).

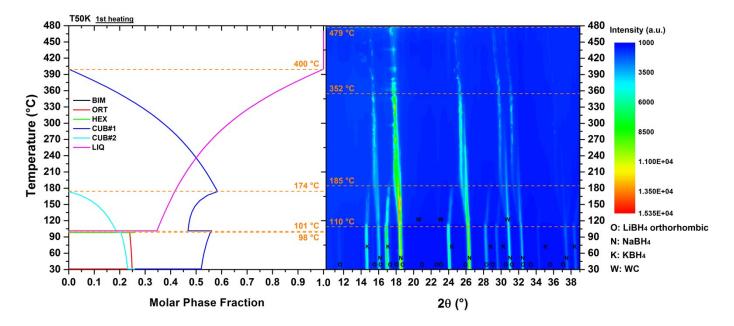


Figure S4 - Amount of calculated phases (CALPHAD, left) and SR-PXD (right) of T50K, 0.25LiBH₄-0.25NaBH₄-0.50KBH₄ ($\lambda = 0.9938$ Å, $\Delta T/\Delta t = 5$ °C/min, argon atmosphere).

As reported before, at 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively, from *in-situ* investigation the eutectic melting can be observed at 110 °C. At 185 °C (174 °C calculated temperature), the cubic phase two (KBH₄) disappear because of the formation of a single-phase cubic solution. Liquidus temperature is recorded at 352 °C (calculated temperature 400 °C).

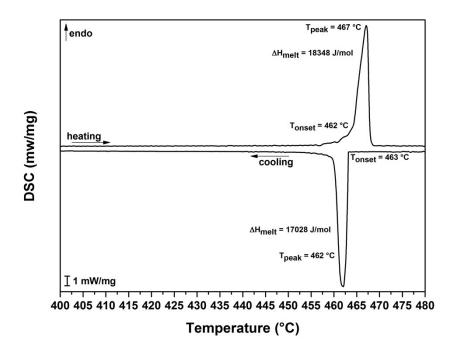


Figure S5 – DSC of 0.682NaBH₄-0.318KBH₄ mixture, heating and cooling at 5 °C/min under 10 bars of $\rm H_2$.

Figure S6 – DSC (left), amount of calculated phases (CALPHAD, middle) and SR-PXD (right) of T1, 0.65LiBH_4 - 0.08NaBH_4 - 0.27KBH_4 ($\lambda = 0.2072$ Å, $\Delta T/\Delta t = 5$ °C/min, argon atmosphere, 2^{nd} cycle of heating (a) and cooling (b)).

As reported before, at 98 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively. From *in-situ* investigation, the transitions can be observed at 95 °C and 104 °C respectively, in good agreement also with DSC measurement (start of DSC peak at 97 °C and 103 °C, on heating, respectively). At 121 °C NaBH₄ disappears (melting), and the liquidus temperature is recorded at 155 °C (calculated temperature 125 °C) but it cannot be clearly reveal by DSC measurements, only a noisy baseline is recorded after the eutectic melting. On cooling, the same transitions can be observed under undercooled conditions.

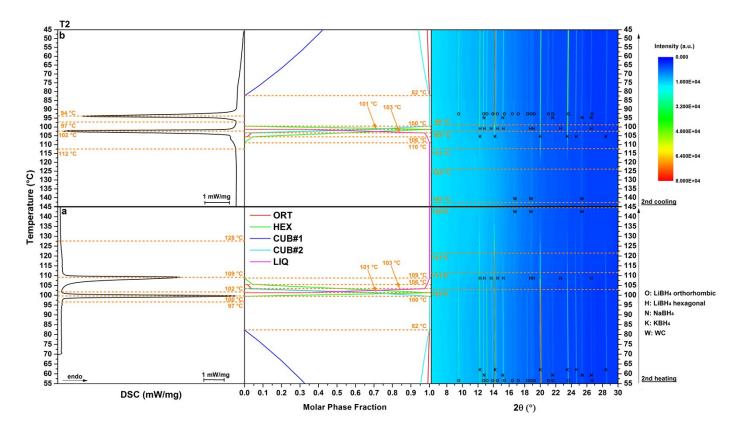


Figure S7 – DSC (left), amount of calculated phases (CALPHAD, middle) and SR-PXD (right) of T2, 0.68LiBH_4 - 0.08NaBH_4 - 0.24KBH_4 ($\lambda = 0.8259$ Å, $\Delta T/\Delta t = 5$ °C/min, argon atmosphere, 2^{nd} cycle of heating (a) and cooling (b)). Presence of WC due to ball milling.

At 82 °C calculated temperature, a single cubic solid solution phase is formed, but it is not revealed by *insitu* investigation. At 100 °C and 101 °C calculated temperature, polymorphic transition of LiBH₄ and eutectic melting are taking place respectively, while from *in-situ* investigation from 103 °C to 111 °C both orthorhombic and hexagonal LiBH₄ are present and then melt. Calculations predict that the cubic phase is the first to melt (103 °C), followed by the orthorhombic (106 °C) and hexagonal phase (109 °C). Experimentally orthorhombic and hexagonal phase are completely melted at 111 °C, followed by the melting of NaBH₄ (121 °C) and KBH₄ (145 °C, liquidus temperature, 109 °C calculated liquidus temperature. On cooling, the same transitions can be observed under undercooled conditions.