Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary information for

Structure and molecular packing in smectic B_{Cr} and A_d phases of Schiff base liquid crystal compounds through the analyses of layer spacing, entropy and crystal structure

Yasuhisa Yamamura,^a Takahito Murakoshi,^a Sakiko Iwagaki,^a Natalia Osiecka,^b Hideki Saitoh,^c Mafumi Hishida,^a Zbigniew Galewski,^d Maria Massalska-Arodź,^b and Kazuya Saito^a

^aDepartment of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
^bThe Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków 31-342, Poland
^cDepartment of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
^dThe Faculty of Chemistry, University of Wrocław, Wrocław 50-383, Poland

	5CBAA
Chemical formula	$C_{18}H_{20}CINO$
Formula Weight	301.81
Crystal size (mm)	0.34×0.30×0.02
T/K	295(2)
Wavelength / Å	0.71073
Crystal system	Orthorhombic
Space group	$Pca2_1$
<i>a</i> / Å	6.1002(3)
b / Å	7.3335(4)
c / Å	36.4538(18)
V / Å ³	1630.79(14)
Ζ	4
F(000)	640
$Dx / Mg \cdot m^{-3}$	1.229
μ / mm ⁻¹	0.233
Absorption correction	Numerical (SADABS)
$T_{\rm max}$ and $T_{\rm min}$	1.00, 0.91
$ heta_{\max}$ / °	27.47
Index ranges	-7 <= h <= 6
C C	-9 <= <i>k</i> <= 9
	-41 <= <i>l</i> <= 47
No. of .reflections collected	10115
No. of independent reflections	3309 [<i>R</i> (int)=0.0192]
Completeness	99.9% [θ<= 27.47°]
No. of reflections $[I > 2\sigma(I)]$	2553
Refinement method	Full-matrix least-squares on F^2
H-atom parameters	Refined all
No. of data used in refinement	3309
No. of parameters	259
No. of restrainets	1
$R[F^2 > 2\sigma(F^2)]$	0.0389
$c_1 \text{ and } c_2 (*)$	0.0584, 0.0894
$wR(F^2)$	0.1128
S	1.083
Absolute structure parameter (**)	-0.04(5)
$(\Delta/\sigma)_{\rm max}$	< 0.001
$\Delta ho_{ m max}$ and $\Delta ho_{ m min}$ (e Å ⁻³)	0.112, -0.144

Table S1. Experimental Conditions and Crystallographic Parameters.

(*) $w = 1 / [\sigma^2(F_o^2) + (c_1 \cdot P)^2 + c_2 \cdot P]$ where $P = (F_o^2 + 2F_c^2) / 3$ (**) Flack x determined using 914 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

1

Table S2. Experimental Conditions and Crystallographic Parameters.

(*) $w = 1 / [\sigma^2(F_o^2) + (c_1 \cdot P)^2 + c_2 \cdot P]$ where $P = (F_o^2 + 2F_c^2) / 3$

Т	C_p	$[H^{\circ}(T) - H^{\circ}(0)] / T$	$S^{\circ}(T)$ - $S^{\circ}(0)$	$-[G^{\circ}(T) - H^{\circ}(0)] / T$
K	J K ⁻¹ mol ⁻¹			
Crystal (K)				
10	6.65	1.76	2.36	0.597
20	25.63	8.72	12.47	3.75
30	47.51	18.00	26.99	9.00
40	67.89	27.97	43.50	15.54
50	86.24	37.82	60.66	22.84
60	102.79	47.29	77.87	30.58
70	117.78	56.31	94.86	38.55
80	131.43	64.86	111.49	46.63
90	143.99	72.96	127.71	54.75
100	155.68	80.65	143.49	62.83
110	166.74	87.98	158.85	70.87
120	177.41	94.99	173.82	78.83
130	187.91	101.74	188.43	86.70
140	198.32	108.26	202.74	94.48
150	208.71	114.61	216.78	102.16
160	219.14	120.82	230.58	109.76
170	229.64	126.91	244.18	117.27
180	240.29	132.91	257.61	124.69
190	251.13	138.85	270.89	132.04
200	262.21	144.74	284.05	139.31
210	273.60	150.60	297.12	146.51
220	285.34	156.46	310.11	153.65
230	297.49	162.33	323.06	160.74
240	310.11	168.22	335.99	167.77
250	323.24	174.16	348.91	174.76
260	336.94	180.15	361.86	181.71
270	351.27	186.22	374.84	188.62
280	366.29	192.38	387.88	195.50

Table S3. Standard thermodynamic quantities of 5CBAA.

290	382 19	198 65	401 01	202.36	
200 15	206.00	202.85	411.70	202.50	
298.13	390.00	203.83	411.79	207.94	
300	399.27	205.05	414.25	209.20	
310	417.83	211.61	427.64	216.03	
320	438.17	218.37	441.22	222.86	
330	461.08	225.36	455.05	229.68	
340	489.16	232.69	469.21	236.52	
350	525.44	240.52	483.89	243.38	
360	576.4	249.1	499.4	250.3	
364.3	604.3	253.1	506.4	253.3	
		Phase transi	tion		
SmB _{Cr} phase					
364.3	544.32	319.8	573.0	253.3	
370	558.61	323.3	581.6	258.2	
371.8	563.1	324.5	584.3	259.8	
		Phase transi	tion		
SmA _d phase					
371.8	664	334	594	259.8	
375.2	663	337	600	263	
		Phase transi	tion		
Isotropic liqui	id				
375.2	589.8	354	617	263	
380	588.16	357	624	267	

Т	C_p	$\left[H^{\circ}(T) - H^{\circ}(0)\right] / T$	$S^{\circ}(T)$ - $S^{\circ}(0)$	$-[G^{\circ}(T) - H^{\circ}(0)] / T$
K	J K ⁻¹ mol ⁻¹	J K ⁻¹ mol ⁻¹	J K ⁻¹ mol ⁻¹	J K ⁻¹ mol ⁻¹
Crystal (K _{III})				
10	7.70	2.44	3.39	0.955
20	26.51	9.48	14.09	4.62
30	48.74	18.86	29.05	10.19
40	69.05	28.92	45.91	16.99
50	87.06	38.79	63.30	24.51
60	103.14	48.20	80.62	32.42
70	117.66	57.10	97.63	40.53
80	131.01	65.51	114.22	48.70
90	143.54	73.49	130.38	56.89
100	155.58	81.10	146.13	65.03
110	167.26	88.41	161.51	73.10
111.5	168.98	89.48	163.78	74.31
		Phase transition		
Crystal (K _{II})				
111.5	168.98	98.18	172.48	74.31
120	178.63	103.54	185.25	81.71
130	189.77	109.74	199.99	90.25
140	200.72	115.85	214.46	98.60
150	211.57	121.87	228.67	106.80
160	222.36	127.81	242.67	114.86
170	233.17	133.69	256.48	122.78
180	244.07	139.52	270.11	130.59
190	255.10	145.31	283.60	138.29
200	266.34	151.08	296.97	145.89
210	277.86	156.85	310.25	153.40
220	289.71	162.61	323.44	160.83
230	301.96	168.41	336.59	168.19
240	314.68	174.23	349.71	175.48

Table S4. Standard thermodynamic quantities of 5ABCA.

250	327.87	180.11	362.82	182.71
260	341.18	186.05	375.94	189.89
270	354.39	192.04	389.06	197.02
280	367.65	198.08	402.19	204.11
290	381.14	204.16	415.33	211.17
298.15	392.43	209.15	426.05	216.90
300	395.03	210.29	428.48	218.20
310	409.50	216.48	441.67	225.19
320	424.74	222.75	454.91	232.16
330	440.69	229.11	468.22	239.11
332	444.0	230.4	470.9	240.5
		Phase transi	tion	
SmB _{Cr} phase				
332	510.13	289.6	530.1	240.5
340	520.61	294.9	542.4	247.5
350	535.99	301.6	557.7	256.1
360	556.0	308.4	573.1	264.7
363.3	563.2	310.7	578.2	267.5
		Phase transi	tion	
SmA _d phase				
363.3	668	322	590	267.5
365.6	667	324	594	270
		Phase transi	tion	
Isotropic liqu	id			
365.6	580.7	339	609	270
370	580.86	342	616	274
380	581.15	349	631	283

Mesogen	Phase	Layer spacing against n	
nABCA	SmB _{Cr}	$c / \text{Å} = 1.4 \times n + 13.3$	
	$\mathrm{SmA}_{\mathrm{d}}$	$d / \text{Å} = 1.4 \times n + 13.0$	
nCBAA	SmB _{Cr}	$c / \text{Å} = 1.4 \times n + 13.5$	
	$\mathrm{SmA}_{\mathrm{d}}$	$d / \text{Å} = 1.4 \times n + 13.2$	
nBBAA	SmB _{Cr}	$c / \text{Å} = 1.4 \times n + 14.4$	
	SmA_d	$d / \text{\AA} = 1.4 \times n + 13.9$	

Table S5. Functions of layer spacing (c, d) against *n* in SmB_{Cr} and SmA_d phases in *n*ABCA, *n*CBAA, and *n*BBAA.

Fig. S1. X-ray diffraction patterns of SmA_d and SmB_{Cr} phases of 8CBAA at various temperatures (not corrected).