Supporting Information of:

Efficient scavenging of Criegee intermediates on water

by surface-active *cis*-pinonic acid

Shinichi Enami*a and A. J. Colussi*b

^aNational Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.

^bLinde Center for Global Environmental Science, California Institute of Technology, California 91125, USA.

*Authors to whom correspondence should be addressed:

S.E. enami.shinichi@nies.go.jp, phone: +81-29-850-2770

A.J.C. ajcoluss@caltech.edu, phone: +1-626-395-6350

FIGURE S1: Negative ion mass spectra from 1 mM α -humulene (α -H) + 0.2 mM NaCl + 10 mM *cis*-pinonic acid (CPA) in AN:H₂O (4:1 = vol:vol) solution microjets in the absence (gray) and presence of O₃(g) (red, $E = 2.3 \times 10^{11}$ molecules cm⁻³ s). The m/z 305/307, 389 and 471/473 signals correspond to chloride-adducts of α -hydroxy-hydroperoxides, Na(CPA)₂⁻, and chloride-adducts of α -acyloxy-hydroperoxides, respectively. See text for details.

FIGURE S2: Signal intensities at m/z 305 and 471 as a function of the concentration of added *cis*-pinonic acid (CPA) to 1mM β -caryophyllene + 0.2 mM NaCl in AN:H₂O (4:1=vol:vol) solution microjets in the presence of O₃ (*E* = 2.4 x 10¹¹ molecules cm⁻³ s). Connecting lines are guides to the eye. See text for details.