Supporting information for:

## The role of amino acid side chains in stabilizing dipeptides: The laser ablation Fourier transform microwave spectrum of Ac-Val-NH<sub>2</sub>

I. León,<sup>a</sup> E. R. Alonso,<sup>a</sup> S. Mata,<sup>a</sup> C. Cabezas,<sup>a</sup> M. A. Rodríguez,<sup>a</sup> J. U. Grabow,<sup>b</sup> and J. L. Alonso<sup>\*a</sup> <sup>a</sup>Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Parque Científico UVa, Universidad de Valladolid, 47011 Valladolid, Spain.

<sup>b</sup>Institut für Physikalische Chemie und Elektrochemie, Lehrgebiet A, Gottfried-Wilhelm-Leibniz-Universität, Callinstrasse 3A, D-30167 Hannover, Germany.

\*Corresponding Author: Jose Luís Alonso, jlalonso@qf.uva.es phones: +34 983 186344 / +34 983 186349 web: http://www.gem.uva.es/ Fig. S01 The pulse sequence depicted in Fig. S01 is generated using a 32-bit counter sourced by a 20 MHz or a 100 kHz base clock, depending on the required pulse duration. The clock of the A/D conversion is phase-stabilized to a 10 MHz base clock. The signal of a 10 MHz reference standard is used to generate these base frequencies either directly or after division of the 20 MHz output signal of a frequency doubler. The trigger signal is derived from the 100 kHz basis such that all harmonics of this frequency can be used in the system. Apart from the transistortransistor-logic (TTL) pulse sequence for the internally singly triggered jet valve (SOURCE), LASER-photolysis, LASER-ablation or flash-lamp trigger (CHARGE), DC-discharge or Q-switch trigger (DISCHARGE), the internally retriggerable MW pulse (EXCITE), DR pulse (PREPARE/MIX), MW/DR protection (PROTECT), and start trigger of the transient recorder (DETECT), additional TTL control signals (CYCLOPS I, II) are provided for the generation of an optional quadraturephase-shift-keying (QPSK) sequence to remove possible phase and amplitude asymmetries of the input channels (I, Q) and known as the cyclically-ordered-phase-sequence (CYCLOPS). Retriggerable without trigger-delay, the segmented memory of the transient recorder captures one FID per segment. At a flight time of about 1 ms for the jet propagating along the resonator's axis, about 4 FIDs can be recorded per gas pulse without compromising the resolution while an S/N improvement of x2 is achieved. For optional double resonance (DR) experiments, the relative phase between the DR pulses can be adjusted according to the requirements of a specific DR phase sequence (PHASE I,II). All TTL status signals for phase control are only active for the duration of the corresponding radiation pulse, so that remaining coherent leakage signals during the detection period are not subjected to the phase modulation and therefore are eliminated due to the Re/Im channel rotation and +/- sign alternation in the data-acquisition cycles.

| 84         | Л                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~       | П                     | 2                              |                                |                                 | Source                             |
|------------|---------------------------------|-----------------------------------------|-----------------------------------------|-----------------------|--------------------------------|--------------------------------|---------------------------------|------------------------------------|
|            |                                 | ~                                       | چ <u>ہ</u> ۔۔۔ا۔<br>چ                   | I                     | 2                              | I                              |                                 | Charge<br>Discharge                |
|            |                                 | ~<br>~                                  | چ<br>چ                                  |                       | ~                              |                                |                                 | Excite<br>CYCLOPS I<br>CYCLOPS II  |
|            |                                 |                                         | «<br>«<br>«                             |                       | M.M.M. <u>*</u><br>*           |                                |                                 | Prepare/Mix<br>Phase I<br>Phase II |
|            |                                 | ۰۰۰۰ <u>چ</u>                           | ~<br>~                                  |                       |                                |                                |                                 | Protect<br>Detect                  |
| -Re{Sa     | b} +Re{S <sub>a</sub><br>∳r∳r∳r | ab} −Im{S                               | ab} +Im{S <sub>ab</sub> }               | +Re{S <sub>ab</sub> } | -Re{S <sub>ab</sub> }          | +Im{S <sub>ab</sub> }          | -Im{S <sub>ab</sub><br> -  -  - | }<br>I                             |
| –Im{Sa<br> | b} +Im{S <sub>a</sub><br>▶ ▶ ▶  | ab} +Re{5                               | S <sub>ab</sub> } -Re{S <sub>ab</sub> } | +Im{S <sub>ab</sub> } | –Im{S <sub>ab</sub> }<br>▶ ▶ ▶ | $-\operatorname{Re}\{S_{ab}\}$ | +Re{S <sub>ab</sub><br>         | }<br>Q                             |



**Fig. S02** The predicted six low-energy conformers of Ac-Val-NH<sub>2</sub> in energetical order from lowest to highest. The rotational constants (in MHz) are also shown.

**Table S01.** Experimental and calculated spectroscopic parameters for the six lowest energy conformers of Ac-Val-NH<sub>2</sub>, including the observed rotamers (C<sub>7</sub>-III and C<sub>5</sub>-III conformers). Ab initio energies are included for the predicted species. All the calculations were done using the 6-311++G(d,p) basis set, except for B3LYP-D3BJ for which def2tzvp was used instead. A, B, and C represent the rotational constants (in MHz);  $\mu_a$ ,  $\mu_b$ , and  $\mu_c$  are the electric dipole moment components (in D);  $\chi_{aa}$ ,  $\chi_{bb}$ , and  $\chi_{cc}$ , are the diagonal elements of the <sup>14</sup>N nuclear quadrupole coupling tensor (in MHz); N<sub>c</sub> and N<sub>t</sub> correspond to the central and terminal <sup>14</sup>N nuclei, respectively.  $\Delta E$  is the relative energies (in cm<sup>-1</sup>) with respect to the global minimum.  $\Delta E_{ZPE}$  is the relative energies (in cm<sup>-1</sup>) with respect to the global minimum, taking into account the zero point energy(ZPE).  $\Delta G$  is the Gibbs energies (in cm<sup>-1</sup>) calculated at 298K.

|                   | Experimental  |               |          | (        | C <sub>7</sub> -III |            | C <sub>5</sub> -III |          |          |            | C5-I     |          |          |            |
|-------------------|---------------|---------------|----------|----------|---------------------|------------|---------------------|----------|----------|------------|----------|----------|----------|------------|
|                   | Rotamer 1     | Rotamer 2     | MP2      | M06-2X   | B3LYP-D3            | B3LYP-D3BJ | MP2                 | M06-2X   | B3LYP-D3 | B3LYP-D3BJ | MP2      | M06-2X   | B3LYP-D3 | B3LYP-D3BJ |
| Α                 | 1388.6071(22) | 1353.8151(58) | 1385.186 | 1396.279 | 1378.672            | 1387.608   | 1366.223            | 1391.378 | 1336.571 | 1340.589   | 1348.950 | 1396.269 | 1352.620 | 1357.923   |
| В                 | 840.91159(42) | 826.98719(28) | 838.465  | 841.410  | 834.033             | 840.758    | 822.860             | 823.807  | 817.164  | 826.713    | 806.537  | 810.489  | 802.463  | 810.462    |
| С                 | 619.86354(17) | 657.16182(21) | 626.387  | 621.346  | 613.927             | 618.821    | 657.379             | 656.299  | 653.082  | 657.068    | 626.969  | 620.156  | 617.367  | 622.343    |
| µ₀                |               |               | 1.2      | 1.4      | 1.4                 | 1.4        | 2.2                 | 2.5      | 2.5      | 2.6        | 0.7      | 1.7      | 1.6      | 1.6        |
| µ₀                |               |               | 1.9      | 2.1      | 2.1                 | 2.0        | 0.0                 | 0.4      | 0.4      | 0.3        | 0.6      | 0.4      | 0.4      | 0.5        |
| μ <sub>c</sub>    |               |               | 0.8      | 0.8      | 0.8                 | 0.8        | 0.3                 | 0.2      | 0.2      | 0.2        | 0.1      | 0.3      | 0.3      | 0.3        |
| $N_c/\chi_{aa}$   | 2.0245(51)    | 2.170(11)     | 2.06     | 2.09     | 2.22                | 2.03       | 2.21                | 2.27     | 2.38     | 2.21       | 2.28     | 2.31     | 2.44     | 2.27       |
| $N_c/\chi_{bb}$   | -2.987(11)    | -2.286(14)    | -3.22    | -3.18    | -3.37               | -3.16      | -2.29               | -2.22    | -2.72    | -2.45      | -3.46    | -2.33    | -3.18    | -2.93      |
| $N_c/\chi_{cc}$   | 0.962(11)     | 0.116(14)     | 1.16     | 1.08     | 1.15                | 1.12       | 0.08                | -0.05    | 0.34     | 0.24       | 1.18     | 0.01     | 0.74     | 0.65       |
| $N_t/\chi_{aa}$   | -0.7689(71)   | 0.613(12)     | -1.04    | -0.80    | -0.77               | -0.71      | 0.38                | 0.88     | 0.59     | 0.50       | -2.11    | -0.76    | -1.50    | -1.51      |
| $N_y/\chi_{bb}$   | 1.902(13)     | -0.925(15)    | 1.95     | 2.05     | 2.14                | 2.08       | -1.23               | -1.02    | -1.2     | -0.99      | 0.07     | -0.76    | -0.51    | -0.37      |
| $N_t/\chi_{cc}$   | -1.133(13)    | 0.312(15)     | -0.91    | -1.25    | -1.37               | -1.36      | 0.84                | 0.14     | 0.64     | 0.49       | 2.05     | 1.52     | 2.01     | 1.88       |
| ΔE                |               |               | 0        | 0        | 0                   | 0          | 83                  | 161      | 360      | 271        | 403      | 511      | 556      | 484        |
| ΔE <sub>ZPE</sub> |               |               | 0        | 51       | 0                   | 0          | 45                  | 0        | 187      | 122        | 267      | 388      | 372      | 321        |
| ΔG                |               |               | 113      | 190      | 115                 | 168        | 154                 | 0        | 0        | 0          | 0        | 298      | 122      | 118        |

## Table S01. Cont.

|                                  | Experimental  |               |          |          | C₅-II    |            | C <sub>7</sub> -I |          |          |            | C <sub>7</sub> -II |          |          |            |
|----------------------------------|---------------|---------------|----------|----------|----------|------------|-------------------|----------|----------|------------|--------------------|----------|----------|------------|
|                                  | Rotamer 1     | Rotamer 2     | MP2      | M06-2X   | B3LYP-D3 | B3LYP-D3BJ | MP2               | M06-2X   | B3LYP-D3 | B3LYP-D3BJ | MP2                | M06-2X   | B3LYP-D3 | B3LYP-D3BJ |
| Α                                | 1388.6071(22) | 1353.8151(58) | 1459.928 | 1478.124 | 1445.795 | 1452.532   | 1268.107          | 1296.690 | 1279.068 | 1287.992   | 1534.606           | 1555.722 | 1536.222 | 1546.055   |
| В                                | 840.91159(42) | 826.98719(28) | 763.069  | 769.803  | 758.491  | 766.400    | 887.512           | 886.970  | 878.761  | 885.804    | 773.625            | 771.279  | 763.985  | 770.868    |
| С                                | 619.86354(17) | 657.16182(21) | 644.125  | 642.501  | 639.507  | 641.934    | 645.512           | 638.250  | 630.885  | 636.035    | 636.289            | 633.483  | 627.149  | 631.908    |
| µ₀                               |               |               | 2.1      | 2.3      | 2.5      | 2.6        | 1.1               | 1.4      | 1.3      | -1.3       | 1.3                | 1.5      | 1.5      | -1.51      |
| µ⊾                               |               |               | 0.7      | 0.4      | 0.4      | -0.5       | 2.4               | 2.5      | 2.5      | -2.5       | 2.4                | 2.4      | 2.4      | -2.32      |
| μ <sub>c</sub>                   |               |               | 0.5      | 0.3      | 0.3      | -0.3       | 1.3               | 1.4      | 1.3      | -1.3       | 0.4                | 0.5      | 0.5      | -0.45      |
| $N_c/\chi_{aa}$                  | 2.0245(51)    | 2.170(11)     | 2.32     | 2.36     | 2.50     | 2.33       | 2.05              | 2.11     | 2.24     | 2.05       | 2.10               | 2.14     | 2.26     | 2.08       |
| N <sub>c</sub> /χ <sub>bb</sub>  | -2.987(11)    | -2.286(14)    | -0.58    | -0.40    | -0.87    | -0.63      | -2.40             | -2.47    | -2.50    | -2.24      | -1.27              | -1.52    | -1.55    | -1.37      |
| Ν <sub>c</sub> / χ <sub>cc</sub> | 0.962(11)     | 0.116(14)     | -1.74    | -1.96    | -1.62    | -1.70      | 0.36              | 0.37     | 0.26     | 0.19       | -0.84              | -0.62    | -0.71    | -0.71      |
| $N_t/\chi_{aa}$                  | -0.7689(71)   | 0.613(12)     | 0.14     | 0.74     | 0.55     | 0.55       | 0.83              | 1.04     | 1.03     | 0.98       | -0.05              | 0.10     | 0.12     | 0.14       |
| $N_y/\chi_{bb}$                  | 1.902(13)     | -0.925(15)    | -0.37    | -0.05    | -0.40    | -0.12      | 1.83              | 2.03     | 2.11     | 2.03       | 1.58               | 1.70     | 1.78     | 1.70       |
| $N_t/\chi_{cc}$                  | -1.133(13)    | 0.312(15)     | 0.23     | -0.69    | -0.15    | -0.43      | -2.67             | -3.07    | -3.14    | -3.01      | -1.52              | -1.80    | -1.90    | -1.84      |
| ΔΕ                               |               |               | 342      | 293      | 417      | 313        | 440               | 182      | 193      | 144        | 588                | 457      | 406      | 402        |
| ΔE <sub>ZPE</sub>                |               |               | 272      | 241      | 271      | 179        | 429               | 176      | 155      | 134        | 629                | 497      | 414      | 416        |
| ΔG                               |               |               | 351      | 298      | 169      | 84         | 602               | 287      | 225      | 265        | 811                | 468      | 547      | 593        |

| J | K'1 | K' <sub>+1</sub> | J" | K".1 | K″ <sub>+1</sub> | ľ | F | I" | F" | V <sub>obs.</sub> | V <sub>obs</sub> V <sub>calc</sub> . |
|---|-----|------------------|----|------|------------------|---|---|----|----|-------------------|--------------------------------------|
| 3 | 0   | 3                | 2  | 0    | 2                | 1 | 2 | 1  | 1  | 4182.7061         | 0.0034                               |
| 3 | 0   | 3                | 2  | 0    | 2                | 2 | 4 | 2  | 3  | 4182.7511         | 0.0027                               |
| 3 | 0   | 3                | 2  | 0    | 2                | 2 | 3 | 2  | 2  | 4182.8731         | 0.0024                               |
| 3 | 0   | 3                | 2  | 0    | 2                | 1 | 3 | 0  | 2  | 4182.9342         | 0.0043                               |
| 3 | 0   | 3                | 2  | 0    | 2                | 2 | 5 | 2  | 4  | 4182.9879         | 0.0046                               |
| 3 | 0   | 3                | 2  | 0    | 2                | 1 | 4 | 1  | 3  | 4183.1587         | 0.0032                               |
| 3 | 2   | 2                | 2  | 2    | 1                | 2 | 2 | 2  | 1  | 4381.6986         | -0.0021                              |
| 3 | 2   | 2                | 2  | 2    | 1                | 1 | 3 | 1  | 2  | 4381.8243         | -0.0003                              |
| 3 | 2   | 2                | 2  | 2    | 1                | 1 | 4 | 1  | 3  | 4382.0074         | -0.0016                              |
| 3 | 2   | 2                | 2  | 2    | 1                | 2 | 5 | 2  | 4  | 4382.2344         | -0.0014                              |
| 3 | 2   | 2                | 2  | 2    | 1                | 0 | 3 | 0  | 2  | 4382.2853         | -0.0009                              |
| 3 | 2   | 2                | 2  | 2    | 1                | 2 | 3 | 2  | 2  | 4382.7738         | -0.002                               |
| 3 | 2   | 2                | 2  | 2    | 1                | 2 | 4 | 2  | 3  | 4382.8690         | 0.0028                               |
| 3 | 2   | 2                | 2  | 2    | 1                | 1 | 2 | 1  | 1  | 4382.9496         | -0.0008                              |
| 4 | 0   | 4                | 3  | 1    | 3                | 1 | 3 | 1  | 2  | 5207.0316         | 0.0007                               |
| 4 | 0   | 4                | 3  | 1    | 3                | 2 | 5 | 2  | 4  | 5207.0804         | 0.0008                               |
| 4 | 0   | 4                | 3  | 1    | 3                | 0 | 4 | 0  | 3  | 5207.1285         | 0.0012                               |
| 4 | 0   | 4                | 3  | 1    | 3                | 2 | 6 | 2  | 5  | 5207.1414         | -0.0009                              |
| 4 | 0   | 4                | 3  | 1    | 3                | 1 | 4 | 1  | 3  | 5207.2195         | -0.0014                              |
| 4 | 0   | 4                | 3  | 1    | 3                | 1 | 5 | 1  | 4  | 5207.2854         | -0.0008                              |
| 4 | 0   | 4                | 3  | 1    | 3                | 2 | 3 | 2  | 2  | 5207.3294         | 0.0021                               |
| 4 | 0   | 4                | 3  | 0    | 3                | 1 | 5 | 2  | 4  | 5425.1573         | -0.0007                              |
| 4 | 0   | 4                | 3  | 0    | 3                | 1 | 5 | 1  | 4  | 5425.2329         | -0.0030                              |
| 4 | 0   | 4                | 3  | 0    | 3                | 2 | 3 | 2  | 2  | 5425.2401         | 0.0008                               |
| 4 | 0   | 4                | 3  | 0    | 3                | 2 | 6 | 2  | 5  | 5425.3965         | -0.0027                              |
| 4 | 0   | 4                | 3  | 0    | 3                | 0 | 4 | 0  | 3  | 5425.4600         | -0.0027                              |
| 4 | 0   | 4                | 3  | 0    | 3                | 2 | 5 | 1  | 4  | 5425.5869         | -0.0016                              |
| 4 | 0   | 4                | 3  | 0    | 3                | 1 | 3 | 2  | 2  | 5425.6772         | -0.0024                              |

**Table S02.** Measured frequencies and residuals (in MHz) for the nuclear quadrupole coupling hyperfine components of the  $C_7$ -III conformer of Ac-Val-NH<sub>2</sub>.

| J | K'1 | K' <sub>+1</sub> | J" | K'' <sub>-1</sub> | K″ <sub>+1</sub> | ľ | F | ľ | <b>F</b> " | V <sub>obs.</sub> | V <sub>obs.</sub> - V <sub>calc.</sub> |
|---|-----|------------------|----|-------------------|------------------|---|---|---|------------|-------------------|----------------------------------------|
| 3 | 1   | 3                | 2  | 1                 | 2                | 1 | 4 | 1 | 3          | 4177.6912         | -0.0001                                |
| 3 | 1   | 3                | 2  | 1                 | 2                | 2 | 5 | 2 | 4          | 4177.7269         | -0.0001                                |
| 3 | 1   | 3                | 2  | 1                 | 2                | 2 | 3 | 0 | 2          | 4177.7400         | -0.0001                                |
| 3 | 0   | 3                | 2  | 0                 | 2                | 2 | 3 | 2 | 2          | 4321.5734         | -0.0028                                |
| 3 | 0   | 3                | 2  | 0                 | 2                | 2 | 4 | 2 | 3          | 4321.6002         | 0.0001                                 |
| 3 | 0   | 3                | 2  | 0                 | 2                | 1 | 2 | 1 | 1          | 4321.6137         | -0.0014                                |
| 3 | 0   | 3                | 2  | 0                 | 2                | 2 | 5 | 2 | 4          | 4321.7529         | -0.0002                                |
| 3 | 0   | 3                | 2  | 0                 | 2                | 0 | 3 | 0 | 2          | 4321.9104         | 0.0020                                 |
| 3 | 1   | 2                | 2  | 1                 | 1                | 2 | 5 | 2 | 4          | 4682.5783         | 0.0016                                 |
| 3 | 1   | 2                | 2  | 1                 | 1                | 1 | 4 | 1 | 3          | 4682.6382         | 0.0045                                 |
| 3 | 1   | 2                | 2  | 1                 | 1                | 1 | 2 | 1 | 1          | 4682.6952         | -0.0045                                |
| 3 | 1   | 2                | 2  | 1                 | 1                | 2 | 4 | 2 | 3          | 4682.7236         | 0.0053                                 |
| 3 | 1   | 2                | 2  | 1                 | 1                | 2 | 3 | 2 | 2          | 4682.8164         | 0.0029                                 |
| 4 | 1   | 4                | 3  | 1                 | 3                | 2 | 6 | 2 | 5          | 5538.8507         | 0.0055                                 |
| 4 | 1   | 4                | 3  | 1                 | 3                | 2 | 5 | 2 | 4          | 5538.8758         | -0.0020                                |
| 4 | 2   | 2                | 3  | 2                 | 1                | 0 | 4 | 0 | 3          | 6193.7977         | -0.0009                                |
| 4 | 2   | 2                | 3  | 2                 | 1                | 2 | 6 | 2 | 5          | 6193.8758         | -0.0001                                |
| 4 | 2   | 2                | 3  | 2                 | 1                | 1 | 5 | 1 | 4          | 6194.0125         | -0.0025                                |
| 4 | 2   | 2                | 3  | 2                 | 1                | 2 | 5 | 2 | 4          | 6194.2932         | -0.0001                                |
| 4 | 2   | 2                | 3  | 2                 | 1                | 2 | 4 | 2 | 3          | 6194.4250         | -0.0029                                |
| 5 | 1   | 5                | 4  | 1                 | 4                | 2 | 3 | 0 | 4          | 6883.0983         | -0.0018                                |
| 5 | 1   | 5                | 4  | 1                 | 4                | 2 | 5 | 2 | 4          | 6883.1050         | 0.0034                                 |
| 5 | 1   | 5                | 4  | 1                 | 4                | 2 | 6 | 2 | 5          | 6883.1136         | -0.0013                                |
| 5 | 1   | 5                | 4  | 1                 | 4                | 2 | 7 | 2 | 6          | 6883.1221         | 0.0022                                 |
| 5 | 1   | 5                | 4  | 1                 | 4                | 1 | 5 | 1 | 4          | 6883.1319         | 0.0035                                 |
| 5 | 0   | 5                | 4  | 0                 | 4                | 1 | 6 | 1 | 5          | 6952.2332         | 0.0016                                 |
| 5 | 0   | 5                | 4  | 0                 | 4                | 2 | 4 | 2 | 3          | 6952.2637         | -0.0042                                |
| 5 | 0   | 5                | 4  | 0                 | 4                | 2 | 7 | 2 | 6          | 6952.2772         | -0.0038                                |
| 5 | 0   | 5                | 4  | 0                 | 4                | 0 | 5 | 0 | 4          | 6952.2869         | -0.0015                                |

**Table S03.** Measured frequencies and residuals (in MHz) for the nuclear quadrupole coupling hyperfine components of the  $C_5$ -III conformer of Ac-Val-NH<sub>2</sub>.

**Fig. S03** Calculated MP2/6-311++G(d,p) potential energy surface (PES) for the torsional coordinate of the isopropyl group of Ac-Val-NH<sub>2</sub>. From left to right: Conformers C<sub>5</sub>-II, C<sub>5</sub>-I and C<sub>5</sub>-III.

