Supporting Information

Rare-Earth Doped Fluoride Phosphate Glasses: Structural Foundations of Luminescence Properties

Gustavo Galleani¹, Silvia Helena Santagneli¹, and Younes Messaddeq^{1,2}

1. Institute of Chemistry – São Paulo State University/UNESP – Araraquara-SP,

Brazil

2. Center for Optics, Photonics and Lasers – Laval University – Québec-QC, Canada

Marcos de Oliveira Jr.³ and Hellmut Eckert^{3,4}

3. Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP.

Brasil

4. Institut für Physikalische Chemie, WWU Münster, Germany

Pulsed Electron Paramagnetic Resonance spectroscopy. Figures S1-S5 show electron spin echo envelope modulation (ESEEM) spectra respectively for the glass samples 5SrPF, 5SrPF bifluorinated (5SrPF_B), 10SrPF, 20SrPF and 40SrPF, obtained with the three-pulse sequence $(t_p) - \tau - (t_p) - T - (t_p) - echo$ at 700 mT. The ESEEM spectra were obtained for three different τ values in order to explore the occurrence of blind-spots. Spectra resulting from the co-addition of the spectra for different τ values are also shown in Figures S1-S5.

Figure S1. ESEEM EPR spectra for the glass sample 5SrPF measured at 700 mT for $\tau = 100$ ns, 120 ns and 140 ns, where τ is the delay between the two first pulses in the ESEEM pulse sequence. The spectrum resulting from the sum of the spectra for different τ values is also shown.

Figure S1. ESEEM EPR spectra for the glass sample 5SrPF bifluorinated measured at 700 mT for $\tau = 100$ ns, 120 ns and 140 ns, where τ is the delay between the two first pulses in the ESEEM pulse sequence. The spectrum resulting from the sum of the spectra for different τ values is also shown.

Figure S1. ESEEM EPR spectra for the glass sample 10SrPF measured at 700 mT for τ = 100 ns, 120 ns and 140 ns, where τ is the delay between the two first pulses in the ESEEM pulse sequence. The spectrum resulting from the sum of the spectra for different τ values is also shown.

Figure S1. ESEEM EPR spectra for the glass sample 20SrPF measured at 700 mT for τ = 100 ns, 120 ns and 140 ns, where τ is the delay between the two first pulses in the ESEEM pulse sequence. The spectrum resulting from the sum of the spectra for different τ values is also shown.

Figure S1. ESEEM EPR spectra for the glass sample <u>40SrPF</u> measured at 700 mT for τ = 100 ns, 120 ns and 140 ns, where τ is the delay between the two first pulses in the ESEEM pulse sequence. The spectrum resulting from the sum of the spectra for different τ values is also shown.