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1. The synthesis procedure

The schematic of synthesis procedure of ap-NCF NPs and ap-NCF ferrite-CB hybrids discussed 

in manuscript is given below. 

Figure-S1: The synthesis procedure for (a) ap-NCF NPs and (b) ap-NCF ferrite-CB hybrid 

2. Magnetic Properties of Nanoparticles: The magnetization curves for both as-prepared and 

annealed NCF NPs at room temperature, 300 K were recorded by a VSM with applied field up 2 



Tesla. The M-H loops of both the NPs along with their initial magnetization curve are shown in 

Figure-S2. The initial magnetization curves fitted with the law of approach to saturation in which 

the saturation magnetization ( ) and magnetic anisotropy constant (K) can be estimated by 𝑀𝑆

equation:1 
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Where, H = applied magnetic field,  , ‘a’ is a constant and ‘c’ corresponds to the high-
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field magnetic susceptibility. The parameters so obtained are presented in the Table 1.

Figure S2: Magnetization curve with initial magnetization (insert of LHS) for both the samples.

Table-S1:  Magnetic parameters of both the samples at 300 K

Samples Name Ms (emu/gm) HC (Oe) K (erg/cm3)

as-prepared NCF NPs 41 775 1.5x105

Annealed NCF NPs 55.24 225 0.88x105



The annealed (as-prepared) NPs exhibit higher (lower) saturation magnetization and lower 

(higher) magnetocrystalline anisotropy and coercivity. The magnetocrystalline anisotropy and 

coercivity is at least 200% more in as-prepared as compared to annealed NPs (see Table-S1).  

This large value of anisotropy in the as-prepared NPs can be mainly attributed to non-

stoichiometric divalent cation distribution. It is clear from cation distribution of NPs that, in case 

of as-prepared NPs the considerable amount of Ni2+ ions resides at A-site, while on the other 

hand in annealed NPs, most of the Ni2+ ions resides at B-site. It has been reported2 that the Co2+ 

ions at the B- site and Ni2+ ions at the A-site induce the high magnetocrystalline anisotropy due 

to incomplete quenching of orbital momentum. Since Co2+ and Fe3+ cations occupancies does not 

change much after annealing, which indicate that non-equilibrium occupation of Ni2+ ions at A-

site in as-prepared NPs results in large magnetocrystalline anisotropy and hence coercivity.

3. AC conductivity of NCF-CB/PVA composite:

Figure-S3: The comparison of the real part of AC conductivity of the 25 wt% ap-NCF-CB/PVA 
composite (in blue color) and 25 wt% an-NCF-CB/PVA (in olive color).



4. Effect of varying wt% of ap-NCF NPs in EM wave absorption properties: Figure-S4 

illustrates the total shielding effectiveness SE, of the ap-NCF based composite films; in these ap-

NCF-CB/PVA composite based films, the wt% of ap-NCF NPs is varied from 0 wt% to 25 wt%; 

while the CB wt% was fixed at 15 wt% throughout the experiments. It can be observed from the 

figure-S3 that on increasing the wt% of ap-NCF NPs in ap-NCF-CB/PVA composite from 0 

wt% to 25 wt%, the total shielding effectiveness SE is found to increase from 12 dB to 27 dB. 

This increase in SE of ap-NCF-CB/PVA composite on increasing ferrite NPs wt% can be 

attributed to: (a) enhancement in interfacial dielectric polarization as discussed in dielectric 

section as on increasing the wt% of ferrite NPs number of interfaces in ap-NCF-CB/PVA 

composite increases; and (b) enhancement in magnetic losses due to the magnetic nature of an-

NCF NPs through various mechanism. It can be noted from the figure-S3 that above 20 wt% of 

ap-NCF NPs in composite films, SE achieves the value above 20 dB  (99.5 % attenuation of EM 

wave), necessary for commercial level applications31, therefore it can be concluded that, above 

20 wt% of ap-NCF loading in composite, these composite films can be used as a efficient 

microwave absorber. It is also important to note that the ap-NCF-CB/PVA composite with 25 

wt% of ap-NCF shows the maximum value for shielding due to reflection SER, which is in 

between 8 to 5 dB (figure-S3 (a, b), in supplementary sheet).



Figure-S4: The shielding effectiveness (a) due to absorption (SEA), (b) due to reflection (SER) 
and (c) total shielding effectiveness (SE) of all ap-NCF-CB/PVA composite with different wt% 
of ap-NCF NPs (0 wt%, 10 wt%, 15 wt%, 20 wt% and 25 wt%).

5. The eddy current losses in NCF-CB/PVA composite: The eddy current losses of a system 

can be evaluated by the equation: , where  is the permeability of free 𝜇'' ≈ 2𝜋𝜇0(𝜇')2𝜎𝑑2𝑓/3 𝜇0

space,  is the thickness of the sample and  is the electrical conductivity3, 4. If eddy current 𝑑 𝜎

losses are the main contribution to the magnetic loss in the system, then the value of the factor 

 must be a constant over entire frequency rage. However it can be seen from the 𝜇''(𝜇')2𝑓 ‒ 1

figure-S5, that the  value is not independent of frequency; which implies that the 𝜇''(𝜇') ‒ 2𝑓 ‒ 1

eddy current losses are not only contribution to the magnetic losses but natural resonance and 

FMR loss also contributes to the magnetic losses in these composite.



Figure-S5: Plot of  versus frequency for ap-NCF-CB/PVA composite ap-NCF-𝜇''(𝜇') ‒ 2𝑓 ‒ 1

CB/PVA composite (for 25 wt % of NCF NPs).

6. The impedance matching:



Figure-S6: The ratio of  i.e.  for three different composites namely CB/PVA, ap-𝜀'𝑎𝑛𝑑 𝜇' (𝜇'

𝜀')
NCF-CB/PVA and an-NCF-CB/PVA.

Figure-S7: The schematic representation of the proposed microwave shielding mechanism,(a) 
in ap-NCF-CB/PVA composite film and (b) in an-NCF-CB/PVA composite film.
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