## Electronic Supplementary Information

## A complicated biocomputing system based on multi-responsive P(NIPAM-*co*-APBA) copolymer film electrodes and electrocatalysis of NADH

Jiying Liang,<sup>a</sup> Xue Yu,<sup>a</sup> Tiangang Yang,<sup>a</sup> Menglu Li,<sup>a</sup> Li Shen,<sup>b</sup> Yue Jin<sup>c</sup> and Hongyun Liu<sup>a</sup>\*

<sup>a</sup> College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China.

<sup>b</sup> Logist School, Beijing Wuzi University, Beijing 101149, P. R. China.

<sup>c</sup> Institute of Apicultural Research, Chinese Academy of Agricultural Sciences,

Beijing 100093, P. R. China.

\*Corresponding author: Hongyun Liu, 19, Xinjiekouwai Street, Haidian District, Beijing 100875, People's Republic of China. Tel: (86)-10-58807843. E-mail: liuhongyun@bnu.edu.cn.



**Fig. S1** (A) Continuous CVs at 0.1 V s<sup>-1</sup> for the electropolymerization of P(NIPAM*co*-APBA) films at Au electrodes in the precursor solution. (B) CVs of 0.5 mM FCA at 0.1 V s<sup>-1</sup> in pH 9.0 buffers at 37 °C at (a) bare Au electrodes and (b) P(NIPAM-*co*-APBA) film electrodes.



**Fig. S2** IR spectra of (a) APBA, (b) PAPBA, (c) NIPAM, (d) PNIPAM and (e) P(NIPAM-*co*-APBA) samples.



**Fig. S3** CVs of 0.5 mM FCA at 0.1 V s<sup>-1</sup> at (A) bare Au electrodes, (B) PAPBA film electrodes and (C) PNIPAM film electrodes in pH 9.0 buffers at (a) 37 and (b) 20 °C, respectively.

**Table 1S** Water CA (°) of PNIPAM, PAPBA and P(NIPAM-co-APBA) films electropolymerized on ITO electrodes under different conditions. The CA value was the average of 5 measurements at different positions for the same sample with the standard deviation

|                 | PNIPAM         | РАРВА          | P(NIPAM-co-APBA) |
|-----------------|----------------|----------------|------------------|
| pH 9.0 at 20 °C | 46.8 ± 1.2     | 52.9 ± 2.6     | 72.1 ± 1.1       |
| pH 9.0 at 37 °C | 98.3 ± 4.9     | 56.0 ± 2.4     | 30.6 ± 1.4       |
| pH 9.0 at 37 °C | 98.6 ± 4.9     | 30.6 ± 1.5     | 29.9 ± 1.0       |
| 0.2 M glucose   |                |                |                  |
| pH 7.0 at 37 °C | $92.2 \pm 4.6$ | $65.2 \pm 3.3$ | 45.7 ± 2.3       |



**Fig. S4** CVs of 0.5 mM FCA at 0.1 V s<sup>-1</sup> in pH 9.0 buffers at 37 °C at (A) bare Au, (B) PNIPAM and (C) PAPBA film electrodes with (a) 0 and (b) 0.2 M glucose, respectively.



**Fig. S5** CVs of 0.5 mM FCA at 0.1 V s<sup>-1</sup> and at 37 °C at (A) bare Au, (B) PNIPAM and (C) PAPBA film electrodes in (a) pH 7.0 and (b) pH 9.0 buffers, respectively.



**Fig. S6** Dependence of CV  $I_{pa}$  of 0.5 mM FCA at 0.3 V for P(NIPAM-*co*-APBA) films at 0.01 V s<sup>-1</sup> in buffers containing 5 mM NADH on (A) the solution temperature switched between 20 and 37 °C at pH 9.0, (B) the glucose concentration cycled between 0 and 0.2 M at pH 9.0 and 37 °C, and (C) the solution pH switched between 7.0 and 9.0 at 37 °C.

**Table 2S** Truth table of the 4-input/4-output logic gate circuit on the platform of FCA

 solution and P(NIPAM-co-APBA) films

| Input A | Input B | Input C | Input D | Output 1           | Output 2                   | Output 3                   | Output 4                  |
|---------|---------|---------|---------|--------------------|----------------------------|----------------------------|---------------------------|
| Т       | рН      | NADH    | Glucose | $I_{\rm pa} < 0.3$ | $0.3 \le I_{\rm pa} < 0.9$ | $0.9 \le I_{\rm pa} < 1.4$ | $I_{\mathrm{pa}} \ge 1.4$ |
| 0       | 0       | 0       | 0       | 0                  | 1                          | 0                          | 0                         |
| 0       | 0       | 0       | 1       | 1                  | 0                          | 0                          | 0                         |
| 0       | 0       | 1       | 0       | 0                  | 1                          | 0                          | 0                         |
| 0       | 0       | 1       | 1       | 0                  | 1                          | 0                          | 0                         |
| 0       | 1       | 0       | 0       | 0                  | 1                          | 0                          | 0                         |
| 0       | 1       | 0       | 1       | 1                  | 0                          | 0                          | 0                         |
| 0       | 1       | 1       | 0       | 0                  | 1                          | 0                          | 0                         |
| 0       | 1       | 1       | 1       | 0                  | 1                          | 0                          | 0                         |
| 1       | 0       | 0       | 0       | 0                  | 1                          | 0                          | 0                         |
| 1       | 0       | 0       | 1       | 0                  | 1                          | 0                          | 0                         |
| 1       | 0       | 1       | 0       | 0                  | 0                          | 1                          | 0                         |
| 1       | 0       | 1       | 1       | 0                  | 1                          | 0                          | 0                         |
| 1       | 1       | 0       | 0       | 0                  | 1                          | 0                          | 0                         |
| 1       | 1       | 0       | 1       | 0                  | 1                          | 0                          | 0                         |
| 1       | 1       | 1       | 0       | 0                  | 0                          | 0                          | 1                         |
| 1       | 1       | 1       | 1       | 0                  | 1                          | 0                          | 0                         |

| A Input C<br>(NADH)       | Input D<br>(glucose)    | Output 4<br>I <sub>pa</sub> ≥1.4 µA |  |
|---------------------------|-------------------------|-------------------------------------|--|
| 0                         | 1                       | 0                                   |  |
| 1                         | 0                       | 1                                   |  |
| B 2<br>Input C<br>Input D | -to-1 Encoder<br>—————— | —— Output 4                         |  |

**Fig. S7** (A) Truth tables and (B) schematic representation of 2-to-1 encoder on the platform of FCA solution at 37 °C and pH 9.0 and P(NIPAM-*co*-APBA) films with NADH and glucose as 2 inputs and Output 4 as the output.