Separate Mechanisms of Ion Oligomerization Tune the Physicochemical Properties of n-Butylammonium Acetate: Cation-Base Clusters vs. Anion-Acid Dimers

Paula Berton,^a Steven P. Kelley,^a Hui Wang,^b Allan S. Myerson,^c and Robin D. Rogers^{a,d,*}

^aDepartment of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC H3A 0B8, Canada; ^bInstitute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; ^cNovartis-MIT Center for Continuous Manufacturing and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; ^d525 Solutions, Inc., 720 2nd Street, Tuscaloosa, AL 35401, USA.

1. Thermal data for [C₄NH₃][OAc]

Figure S1. DSC of **a**) crystalline [C₄NH₃][OAc], and **b**) liquid [C₄NH₃][OAc]. Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

^{*}Corresponding author: Email: robin.rogers@mcgill.ca

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

2. Water content of the mixtures

Mole fraction of	Mixtures of [C ₄ N	NH ₃][OAc] + HOAc	Mixtures of [C ₄ NH ₃][OAc] + C ₄ NH ₂		
HOAc or C_4NH_2 (χ) in the mixtures	Water content (ppm)Mole of water per mole mixture		Water content (ppm)	Mole of water per mole mixture	
0	3687.3	0.027	4147.5	0.030	
0.10	4307.8	0.030	5147.9	0.036	
0.20	4768.0	0.031	4645.2	0.031	
0.33	4384.2	0.027	5017.4	0.032	
0.50	4542.3	0.024	4573.3	0.026	
0.67	3627.4	0.017	3689.6	0.019	
0.80	3072.9	0.013	3113.4	0.015	
0.90	2665.9	0.010	2734.9	0.012	
1.0	1165.0	0.004	1018.1	0.004	

Table S1. Water content of the mixtures.

3. Thermal data of the mixtures

Figure S2. TGA of the mixtures of a) $[C_4NH_3][OAc] + HOAc$, and b) $[C_4NH_3][OAc] + C_4NH_2$, with $\chi = 0$ ($[C_4NH_3][OAc]$), 0.10, 0.20, 0.33, 0.50, 0.67, 0.80, 0.90, and 1.0.

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S3. DSC of [C₄NH₃][OAc] + HOAc **a**) χ_{HOAc} =0.1, **b**) χ_{HOAc} =0.2, **c**) χ_{HOAc} =0.33, and **d**) χ_{HOAc} =0.5. Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S3 (cont.). DSC of [C₄NH₃][OAc] + HOAc e) χ_{HOAc} =0.67, f) χ_{HOAc} =0.8, g) χ_{HOAc} =0.9, and h) HOAc (χ_{HOAc} =1). Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S3 (cont.). Heat Flow of [C₄NH₃][OAc] + HOAc vs. time **i**) χ_{HOAc} =0.9, and **j**) HOAc (χ_{HOAc} =1). Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S4. DSC of [C₄NH₃][OAc] + C₄NH₂ a) χ_{C4NH2} =0.1, b) χ_{C4NH2} =0.2, c) χ_{C4NH2} =0.33, and
d) χ_{C4NH2} =0.5. Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

Electronic Supporting Information

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S4 (cont.). DSC of [C₄NH₃][OAc] + C₄NH₂ e) χ_{C4NH2} =0.67, f) χ_{C4NH2} =0.8, and g) χ_{C4NH2} =0.9. (The DSC of C₄NH₂ (χ_{C4NH2}=1) was not recorded due to its volatility at room temperature).
h) Heat Flow of [C₄NH₃][OAc] + C₄NH₂ (χ_{C4NH2}=0.9) vs. time. Dark brown line: First cycle; Orange line: Second cycle; Lime green line: Third cycle.

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

4. ¹H NMR spectra

 $[C_4NH_3][OAc] + HOAc$ system:

Figure S5. ¹H NMR spectra of the mixtures of [C₄NH₃][OAc] + HOAc using CDCl₃ as external lock at 25 °C (H_N represents the protons on nitrogen).

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S6. ¹H NMR chemical shifts of H-1, H-2, H-3, H-4, and H-6 of the [C₄NH₃][OAc] + HOAc mixtures as a function of HOAc concentration.

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

 $[C_4NH_3][OAc] + C_4NH_2$ system:

Figure S7. ¹H NMR spectra of the mixtures of $[C_4NH_3][OAc] + C_4NH_2$ using CDCl₃ as external lock at 25 °C (H_N represents the protons on nitrogen).

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S8. ¹H NMR chemical shifts of H-1, H-2, H-3, H-4, and H-6 of the [C₄NH₃][OAc] + C₄NH₂ mixtures as a function of C₄NH₂ concentration.

Electronic Supporting Information Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

5. FT-IR spectra

Figure S9. FT-IR spectra of the mixtures of $[C_4NH_3][OAc] + HOAc$ (left) and the mixtures of $[C_4NH_3][OAc] + C_4NH_2$ (right). (x in the legends represents mole fraction of HOAc or C_4NH_2 in the mixtures.)

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

6. Solubilities of organics and pharmaceuticals in the mixtures

	Solubilities (mol/mol mixture)							
χ	[C ₄ NH ₃][OAc] + HOAc mixtures*				[C ₄ NH ₃][OAc] + C ₄ NH ₂ mixtures*			
-	Benzene	EtOAc	Heptane	Et ₂ O	Benzene	EtOAc	Heptane	Et ₂ O
0	0.93	0.65	0.05	0.31	0.93	0.65	0.05	0.31
0.10	1.54	0.88	0.06	0.67	1.13	0.66	0.13	0.38
0.20	2.96	2.61	0.06	0.80	1.43	0.76	0.15	0.45
0.33	Miscible	Miscible	0.07	1.25	2.02	1.20	0.16	0.52
0.50	Miscible	Miscible	0.08	8.66	3.43	1.65	0.24	0.79
0.67	Miscible	Miscible	0.07	Miscible	11.99	2.97	0.43	1.32
0.80	Miscible	Miscible	0.05	Miscible	Miscible	6.88	0.74	1.99
0.90	Miscible	Miscible	0.06	Miscible	Miscible	Miscible	1.29	3.46
1.0	Miscible	Miscible	0.12	Miscible	Miscible	Miscible	Miscible	Miscible

Table S2. Solubilities of organics in the mixtures.

*Miscible: The solution was still clear when the mole ratio of the organic solvent to the IL mixture reached 25:1. *Abbreviations*: EtOAc: ethyl acetate; Et₂O: diethyl ether.

Table S3. Solubilities of active pharmaceutical ingredients in the mixtures.

	Solubilities (mol/mol mixture)								
χ	[C ₄ NH ₃][OAc] + HOAc mixtures*				[C ₄ NH ₃][OAc] + C ₄ NH ₂ mixtures*				
	IL (mol/mol mixture)	HOAc (mol/mol mixture)	Ibuprofen (mol/mol mixture)	HOAc + Ibuprofen (mol Ibu+HOAc/mol [OAc] ⁻)	IL (mol/mol mixture)	C4NH2 (mol/mol mixture)	Lidocaine (mol/mol mixture)	C4NH2+ Lidocaine (mol Lid+ C4NH2/mol base)	
0	1	0	0.15	0.15	1	0	0.06	0.06	
0.10	0.9	0.10	0.80	0.9	0.9	0.10	0.08	0.18	
0.20	0.8	0.20	1.37	1.57	0.8	0.20	0.10	0.3	
0.33	0.67	0.33	1.04	1.37	0.67	0.33	0.13	0.46	
0.50	0.5	0.50	0.72	1.22	0.5	0.50	0.28	0.78	
0.67	0.33	0.67	0.43	1.1	0.33	0.67	0.45	1.12	
0.80	0.2	0.80	0.21	1.01	0.2	0.80	0.68	1.48	
0.90	0.1	0.90	0.19	1.09	0.1	0.90	0.78	1.68	
1.0	0	1.0	0.23	1.23	0	1.0	0.93	1.93	

Figure S10. PXRD diffractograms of solids obtained when ibuprofen was added to $[C_4NH_3]$ or to mixtures of $[C_4NH_3][OAc] + C_4NH_2$.

Figure S11. Comparison of measured PXRD of 1:1 C₄NH₂ + Ibuprofen with calculated PXRD pattern of [C₄NH₃][Ibu].

Tuning the Physicochemical Properties of n-Butylammonium Acetate through Ion Oligomerization

Figure S12. Optical microscope image of crystalline 1:1 ibuprofen in C₄NH₂.

Figure S13. PXRD diffractograms of solids obtained when lidocaine was added to HOAc or to mixtures of [C₄NH₃][OAc] + HOAc.