## **Supporting file**

## Impact of ionic liquid on the protein thermodynamics in the presence of cold atmospheric plasma and gamma rays

Pankaj Attri<sup>1,2</sup>, Minsup Kim<sup>3</sup>, Eun Ha Choi<sup>1</sup>, Art E. Cho<sup>3</sup>, Kazunori Koga<sup>2</sup>, and Masaharu Shiratani<sup>2</sup>

<sup>1</sup>Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea. <sup>2</sup>Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan.

<sup>3</sup>Department of Bioinformatics, Korea University, Sejong 02841, Korea.

**Fig. S1**: Chemical denaturation profile of Myoglobin protein after treatment with DBD plasma for different time intervals such as 6, 12 and 24 min (a) control myoglobin, (b) myoglobin + TEMS and (c) myoglobin + TBMS.

**Fig. S2**: Chemical denaturation profile of Myoglobin after treatment with different gamma rays absorbed dose such as 220, 420 and 1130 Gy ((a) control myoglobin, (b) myoglobin + TEMS and (c) myoglobin + TBMS.

**Fig. S3**: Far-UV CD spectra for myoglobin at 222 nm after treatment with DBD plasma for different time intervals such as 6, 12 and 24 mins (a) control Myoglobin, (b) Myoglobin with TEMS and (c) Myoglobin with TBMS.

**Fig. S4**: Far-UV CD spectra for myoglobin at 222 nm after treatment with different gamma rays absorbed dose such as 220, 420 and 1130 Gy a) control Myoglobin, (b) Myoglobin with TEMS and (c) Myoglobin with TBMS.



Fig. S1



Fig. S2



Fig. S3



Fig. S4

| Samples               | Melting Temperature $(T_m \ C)$ |  |  |
|-----------------------|---------------------------------|--|--|
| Mb                    | 83.4                            |  |  |
| Mb + 6 min            | 81.6                            |  |  |
| Mb + 12 min           | 75.5                            |  |  |
| Mb + 24 min           | 74.9                            |  |  |
| Mb + TEMS             | 83.4                            |  |  |
| Mb + 6 min +<br>TEMS  | 82.5                            |  |  |
| Mb + 10 min +<br>TEMS | 81.7                            |  |  |
| Mb + 20 min +<br>TEMS | 81.1                            |  |  |
| Mb + TBMS             | 77.3                            |  |  |
| Mb + 5 min +<br>TBMS  | 76.6                            |  |  |
| Mb + 10 min +<br>TBMS | 75.6                            |  |  |
| Mb + 20 min +<br>TBMS | 73.1                            |  |  |
| Mb + 220 Gy           | 82.9                            |  |  |
| Mb + 420 Gy           | 81.5                            |  |  |
| Mb + 1130 Gy          | 80.6                            |  |  |
| Mb + 220 Gy+<br>TEMS  | 82.3                            |  |  |
| Mb + 420 Gy+<br>TEMS  | 81.1                            |  |  |
| Mb + 1130 Gy+<br>TEMS | 80.5                            |  |  |
| Mb + 220 Gy+<br>TBMS  | 74.6                            |  |  |
| Mb + 420 Gy+<br>TBMS  | 74.3                            |  |  |
| Mb + 1130 Gy+<br>TBMS | 70.9                            |  |  |

**Table S1.** Thermodynamic changes in the Myoglobin before and after DBD plasma and gamma rays treatment.

| RMSD                               |     |      |           |           |
|------------------------------------|-----|------|-----------|-----------|
|                                    |     | Mb   | Mb + TEMS | Mb + TBMS |
| 20 % H <sub>2</sub> O <sub>2</sub> | (-) | 1.75 | 2.54      | 2.97      |
| 20 % H <sub>2</sub> O <sub>2</sub> | (+) | 2.17 | 2.68      | 3.10      |
| stdev                              |     |      |           |           |
|                                    |     | Mb   | Mb + TEMS | Mb + TBMS |
| 20 % H <sub>2</sub> O <sub>2</sub> | (-) | 0.16 | 0.34      | 0.39      |
| 20 % H <sub>2</sub> O <sub>2</sub> | (+) | 0.45 | 0.30      | 0.44      |

**Table S2**: Root-mean-square atomic positional deviation (RMSD) and standard deviation ofmyoglobin, myoglobin + TEMS and myoglobin + TBMS