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Pjotrs A. Žguns,∗ab Andrei V. Rubanbc and Natalia V. Skorodumovaab

Notice: The order of covered topics may differ from the order in the main article.

Regarding abbreviations: Here we use abbreviations for description of a set of structures:

S — supercell size,
V — number of Va,
R / N — number of relaxed / non-relaxed structures in the set,
a — lattice constant (in Å),
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1 Supplementary information to the section

Cluster Expansion: methodology, results and dis-

cussions

1.a Choice of cluster interactions (CIs)

Here we start with the choice of cluster interactions (CIs) to be included in the Hamiltonian.
For this purpose we use the largest set of structures (set 03: 210 structures, 3 × 3 × 3
supercells, xGd = 0.1296, a = 5.402 Å, PBEsol functional [see Appendix 1]). When reading
this section, please, refer to Sections 3.2 and 3.3 in the main part of this paper.

The simplest choice: H0

The nomenclature provided in Section 3.2 (Tables 1–4) lists all possible structurally
different and “mediated pair” CIs, arising from the complex structure of GDC (and some
triangular CIs). However, it may not be necessary to consider all these complex CIs, hence
we start with the simplest choice of CIs (H0), which approximates configurational energy as
follows:

1) All structurally different pair CIs (with the same vector) and mediated pair CIs (with
the same vector) are treated as one CI. (CIs corresponding to the cases a, b, c, d are considered
as one CI, e.g. JVaVa

3a ≡ JVaVa
3b ≡ JVaVa

3c .)
2) H0 does not include three site CIs (see Table 4).
3) The largest possible cut-off radius is used. Since 3 × 3 × 3 supercells are considered,

the cut-off radius is 1.871a and GdVa CIs 9–11 are excluded (see Appendix 2 and Section
3.3).

Ways to systematically improve H0

In order to systematically improve H0, one can include:
a) Si — structural differentiation for i-th CIs, i.e. between structurally different pair CIs.
b) Ci — complex differentiation between structurally different and mediated pair CIs,

thus among a, b, c and d cases of i-th CIs (i.e. Ci is more advanced than Si and includes it).
c) T — consider triangular three site CIs.
For example, let us consider 〈1

2
, 1
2
, 1
2
〉 Va−Va CIs (3a: Va−empty−Va; 3b: Va−Ce−Va,

3c: Va−Gd−Va). S3 implies a differentiation between 3a and 3b, but 3c is not considered
(counted as 3b), while C3 implies a differentiation among all 3a, 3b and 3c cases.

Results
First, let us compare Hamiltonians H0 with H1 (H0 with Va−Va S3) and H2 (H0 with

Va−Va C3). We number Hamiltonians with an unique subscript index. Table S1 shows that
the Va−Va differentiation C3 (among cases 3a, 3b, 3c) is important: cross-validation (CV)

2



score1 is systematically improved (becomes smaller) from H0 to H1, and further to H2. Last
but not least, C3 is necessary because J ’s are rather different: JVaVa

3a = 0.26 eV, JVaVa
3b = 0.38

eV, JVaVa
3c = 0.57 eV (these values are obtained using set 03 and H5, see below).

Table S1: Comparison of choices of CIs. CIs “added” to the simplest H0 are listed (see
Tables 1–3 in the main paper). CV scores are based on the set 03.

Choice Additional CIs CV (meV/defect)
Gd−Gd Va−Va Gd−Va

H0 – – – 6.40
H1 – 3b – 5.55
H2 – 3bc – 4.78

Table S2: Further comparison of choices of CIs: trying to improve H2. CIs “added” to the
simplest H0 are listed (see Tables 1–3 in the main paper). CV scores are based on the set 03.

Choice Additional CIs CV (meV/defect)
Gd−Gd Va−Va Gd−Va

H3 4b 3bc – 4.79
H4 – 3bc 4b 4.75
H5 – 3bc, 4b – 4.20
H6 – 3bc, 4b, 7b – 4.20
H7 – 3bc, 4b, 7b, 9bc – 4.17
H8 4b, 6bc 3bc, 4b, 7b, 9bc, 11bc, 12bcd 4b 4.28

The further influence of the complex differentiations is shown in Table S2. Additional
consideration of 4b Gd−Gd or 4b Gd−Va does not affect the CV score, because these CIs are
more distant and are rather weak compared to Va−Va 3a, 3b, 3c. However, the consideration
of 4b Va−Va decreases the CV score. Further consideration of mediated Va−Va CIs (7b
and 9b, 9c) and other structurally different (or mediated) CIs does not change the CV score
significantly.

The influence of three site CIs was checked by including the smallest triangular clusters
of four different kinds (3Gd, 2Gd&1Va, 1Gd&2Va, 3Va). The addition of these CIs to
Hamiltonians, in fact, increases the CV score (compare Table S3 with Tables S1 & S2).

1The CV score is defined as

CV =

√√√√ 1

n

n∑
i=1

(
Ei − E

′
i

)2
, (1)

where index i runs over the n structures, Ei is the calculated energy and E
′

i is the cluster expansion (CE)
predicted energy based on CIs obtained using n − 1 structures (all except i-th) as an input to CE (see A.
van de Walle, JOM, 2013, 65, 1523-1532). The Ei and E

′

i are usually normalised per atom, but here we use
the total number of Gd and Va in the supercell as the normalisation constant, because in our Hamiltonian
only Gd and Va are interacting. Thus we use [CV score] = [meV/defect].

3



Table S3: Further comparison of choices of CIs: consideration of three site CIs. CIs “added”
to the simplest H0 are listed (see Tables 1–4 in the main paper; T denotes three site CIs).
CV scores are based on the set 03.

Choice Additional CIs CV (meV/defect)
Gd−Gd Va−Va Gd−Va T

H9 – 3bc – 1–4 4.89
H10 – 3bc, 4b – 1–4 4.30
H11 4b, 6bc 3bc, 4b, 7b, 9bc, 11bc, 12bcd 4b 1–4 4.38

Therefore we do not account for triangular three site CIs and further use the choice H5 for
CE.

4



1.b Effect of cut-off radius on cross validation (CV) score

Previous tests (Section 1.a) were performed with the fixed cut-off radius. Here we examine
how CV score behaves upon the increase of the cluster expansion’s (CE’s) cut-off radius
(RCE

CUT). Fig. S1 shows that for both the 3×3×3 and 4×4×4 supercells (set 03 and set 11,
respectively [see Appendix 1]) the CV score decreases upon the increase of RCE

CUT.
Thus, in order to make an accurate CE, one has to include as much as possible long-

range CIs, provided that the number of structures is sufficiently larger than the number of
unknown CIs, enhancing the robustness of CE and guaranteeing the reduction of CV score
upon increase of RCE

CUT.

Figure S1: Normalised CV scores for 3×3×3 and 4×4×4 supercells. The CV scores for the
most long-range cut-off radii are 4.2 meV/defect (0.3 meV/lattice site) and 2.4 meV/defect
(0.2 meV/lattice site) for 3× 3× 3 and 4× 4× 4 cases, respectively.
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1.c Weighting of structures: effect on CV score and CIs

Here we investigate the effect of structure weighting on the CV score and CIs. The goal is to
increase a weight of low-energy structures, which are closer to the ground state. This might
reduce the CV score and provide CIs more appropriate for description of the ground state
in Monte Carlo.

The procedure is the following: we assign the statistical weight to the i-th structure
∝ exp[−(Ei − E0)/(kBTw)], where Ei is the energy of the i-th structure, E0 is the minimal
energy in the set (energies are normalised by Ndefects = NGd + NVa) and parameter Tw is a
weighting temperature.

Fig. S2 shows that upon decrease of the weighting temperature, the CV score slightly
decreases for low energy structures, while for high energy structures the CV score increases.
Finally, weighting virtually does not affect the CIs (see Figs. S3 and S4) therefore we do not
apply it.
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Figure S2: Change of CV score upon decrease of weighting temperature for: 1) all structures,
2) one half of all structures (with lowest energies), 3) the other half of all structures (with
highest energies). Top panel: 210 structures, 3 × 3 × 3 supercell, 7 Va. Bottom panel: 168
structures, 4 × 4 × 4 supercell, 16 Va. In both panels: 5.402 Å lattice constant, PBEsol
exchange-correlation functional.
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Figure S3: Effect of weighting on CIs. Tw specifies the weighting temperature in K. 3×3×3
supercells. CIs (J ’s) vs. distance, from top to bottom: Gd−Gd, Va−Va, Gd−Va.

Figure S4: Effect of weighting on CIs. Tw specifies the weighting temperature in K. 4×4×4
supercells. CIs (J ’s) vs. distance, from top to bottom: Gd−Gd, Va−Va, Gd−Va.
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1.d Convergence of CIs with respect to the set size

Here we analyse the set of 210 structures (3× 3× 3 supercells, 7 Va, xGd = 0.1296, PBEsol
exchange-correlation functional, a = 5.402 Å) and compare CIs obtained from its subsets
of 73 and 163 structures with CIs obtained from the full set (210 structures). The results
are shown in Figs. S5 and S6. CIs obtained from the subset of 73 structures shows good
agreement with CIs obtained from 210 structures, while CIs obtained from the subset of 163
structures shows even better agreement. Thus CIs converge with the increase of number of
structures and the larger set provides more accurate CIs. We conclude that for this particular
case (3× 3× 3 supercells, 32 unknown CIs) a set of ca 150 structures is large enough. Also,
one should care about a composition of the set of structures, so that each CI can be found
in at least several number of structures.

0.01
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

R (lattice constant)

0.25

0.20

0.15

0.10

0.05

0.00

J
 (

e
V

)

S3_V07_R073_a_5.40_PS

S3_V07_R210_a_5.40_PS

Figure S5: Comparison of CIs obtained from 210 structures and a subset of 73 structures.
CIs (J ’s) vs. distance, from top to bottom: Gd−Gd, Va−Va, Gd−Va.
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Figure S6: Comparison of CIs obtained from 210 structures and a subset of 163 structures.
CIs (J ’s) vs. distance, from top to bottom: Gd−Gd, Va−Va, Gd−Va.
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1.e Effect of exchange-correlation functional on CIs

From Figs. S7 and S8 one can see that the choice of exchange-correlation functional (within
Generalized Gradient Approximation) does not affect significantly CIs. For a = 5.402 Å
and a = 5.470 Å, both PBEsol and PBE (in Figs. S7 and S8 we call them PS and PE,
respectively) provide very similar CIs.

Figure S7: Comparison of CIs obtained from the same set of structures using PBEsol and
PBE exchange-correlation functionals. a = 5.402 Å. CIs (J ’s) vs. distance, from top to
bottom: Gd−Gd, Va−Va, Gd−Va.
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Figure S8: Comparison of CIs obtained from the same set of structures using PBEsol and
PBE exchange-correlation functionals. a = 5.470 Å. CIs (J ’s) vs. distance, from top to
bottom: Gd−Gd, Va−Va, Gd−Va.
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1.f Effect of volume expansion on CIs

From Figs. S9 and S10 one can see that volume expansion does not affect the shape of CIs
curves, but only scales them (absolute values become smaller).

Figure S9: Comparison of CIs obtained from two sets with the same structures but different
lattice parameters. 3×3×3 supercells. CIs (J ’s) vs. distance from top to bottom: Gd−Gd,
Va−Va, Gd−Va.
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Figure S10: Comparison of CIs obtained from two sets with the same structures but different
lattice parameters. 4×4×4 supercells. CIs (J ’s) vs. distance from top to bottom: Gd−Gd,
Va−Va, Gd−Va.
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1.g Concentration dependence of CIs

In order to understand how CIs vary with Gd concentration we have performed DFT calcula-
tions for structures with different xGd and performed cluster expansion for each set separately
(see the main part of this paper). Here we show that within the 0.09 < xGd < 0.25 range
CIs are very similar (see Fig. S11).
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Figure S11: Comparison of CIs obtained for different Gd concentrations in the range 0.09 <
xGd < 0.25 ( “V05”: xGd = 0.0926, “V07”: xGd = 0.1296, “V10”: xGd = 0.1852, “V13”:
xGd = 0.2407 ). CIs (J ’s) vs. distance from top to bottom: Gd−Gd, Va−Va, Gd−Va.

Also in Fig. S12 we present the two–set–CV scores2, when making cross–predictions
using these CIs (see Fig. S11). In the worst case the two–set–CV score is 7.3 meV/defect
(Ndefects = 39), or 0.9 meV/lattice site.

It also follows from Fig. S12 that the sets with larger number of structures provide
CIs with better predictive capability. For example, the predictions with larger two–set–
CV scores rely on the CIs calculated using the sets with Nstruct. < 100, while the set with
maximal number of structures (210) shows the best performance. For the case of GDC and
supercell size (3× 3× 3) with 32 unknown CIs in CE, we suggest to have a Nstruct. & 120 in
order to obtain reliable CIs.

2Additionally, to characterise the predictive capabilities of our CE we calculate a two–set–cross validation
(two–set–CV) score, which is similar to the “self” CV score, but E

′

i are calculated using CIs obtained from
a different set of structures. Since configurational energy is defined only up to an additive constant, in this
case we naturally apply a constant shift to all E

′

i in order to minimise the two-set-CV score.
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Figure S12: Each box represents the set of DFT structures, showing Gd concentration,
number of structures and CV score. The following four sets are used: set 02, set 03, set 04,
set 05 (see Appendix 1). All possible twelve two-set-CV scores (meV/defect) for these four
sets are shown with arrows. For example, the two-set-CV score equals 3.7 meV/defect when
predicting energies of the set with xGd = 0.0926, while using the CIs obtained from the set
with xGd = 0.1296 (arrow from the right-upper box to the left-upper box). Normalisation
constant is the number of defects in structures, whose energies are predicted.
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Figure S13: The best (top panel) and the worst (bottom panel) cross-concentration pre-
dictions: CE energies (solid lines) are compared with DFT calculated (grey filling), and are
aligned to have best fits (Hamiltonian is defined up to an additive constant). Total energies
(E) are given (not normalised per number of defects).

Finally, in order to demonstrate how the energies of the structures obtained with our
cluster expansion compare to those calculated with DFT, we show the best and the worst
cross-concentration predictions (see Fig. S13). The best one yields 3.7 meV/defect (0.2
meV/lattice site) for the prediction of xGd = 0.0926 using CIs obtained for xGd = 0.1296, and
the worst one yields 7.3 meV/defect (0.9 meV/lattice site) for the prediction of xGd = 0.2407
using CIs extracted for xGd = 0.1852.
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1.h Effect of supercell size on CIs

The supercell size determines how many long-range interactions can be found. This is so
due to the adopted lattice model (in CE) and periodic boundary conditions. For example, in
any 2×2×2 supercell the number of Gd−Gd CIs with vector

〈
1
2
, 1
2
, 0
〉

equals to the number
of Gd−Gd CIs with vector

〈
3
2
, 1
2
, 0
〉
, therefore one has to exclude the latter CIs (and more

long-range) from CE (see also Appendix 2 in the main paper).
Here we compare CIs obtained from three sets: 1) 2×2×2 large supercells, 206 structures

(xGd = 0.0625, 0.1250, 0.1875); 2) 3 × 3 × 3 large supercells, 210 structures (xGd = 0.1296);
3) 4× 4× 4 large supercells, 168 structures (xGd = 0.1250). a = 5.402 Å for all sets.

Let us notice that all these sets have different cut-off radii due to different supercell sizes.
Therefore, we first of all compare the CIs obtained using different cut-off radii, but using
only one fixed supercell size (4×4×4 supercells). Interactions with R ≤ RCE

CUT are included:

a) RCE
CUT = 2.45a for Gd−Gd and Va−Va CIs, and RCE

CUT = 2.278a for Gd−Va (we also
exclude CIs with the vector

〈
9
4
, 1
4
, 1
4

〉
);

b) RCE
CUT = 2.0a;

c) like in the case of S3 large supercells: RCE
CUT = 1.871a for all CIs, except 1.786a for Gd−Va

and we also exclude Gd−Va vector
〈
7
4
, 1
4
, 1
4

〉
(‘cut like S3’ case);

d) like in the case of S2 large supercells: RCE
CUT = 1.5a for all CIs, except 1.3a for Gd−Va

and we also exclude Gd−Va vector
〈
5
4
, 1
4
, 1
4

〉
and Va−Va vector

〈
3
2
, 0, 0

〉
(‘cut like S2’ case).

The results are shown in Fig. S14. One can see that as the cut-off radius decreases CIs
shift towards J = 0 (absolute values become smaller while the shape of CIs curves remain).
This is so because the long-range CIs are cut and the less long-range CIs effectively become
a zero.

Now let us compare CIs obtained from above-mentioned sets (different supercell sizes)
using corresponding cut-off radii. Fig. S15 shows that for smaller supercell sizes CIs are
shifted towards J = 0 (again, less long-range interactions effectively become zero).

Thus both smaller supercells and shorter cut-off radii cause the shift of CIs towards zero.
This reflects the electrostatic nature of these interactions. Keeping in mind that CIs are
calculated with respect to “effective zero” (J = 0), we would like to mention the following
about the effect of supercell size on CIs:

1) Absolute values of long-range (& 8 Å) CIs calculated within the CE method in the static
limit including ionic relaxations are relatively small (order of magnitude is 1–60 meV).

2) One should recall that the concept of a cluster interaction (CI) is an approximation,
attempting to average individual interactions. In general, individual interactions are affected
by a local structure, which should cause a scatter in values of individual interactions. The
averaging is valid only if the scatter is modest. One could expect that in the case when
interactions are close to zero, the scatter can easily spoil the concept of CI (it would be
meaningless to, e.g. average J1 = j and J2 = −j and obtain Javerage = 0). Nevertheless, our
test calculations show that the concept of CI is reasonable for the considered here system
(see error bars in Fig. S16).
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Figure S14: Comparison of CIs obtained from 4 × 4 × 4 large supercells using different
cut-off radii (rc means cut-off radius, while cut like means cut-off radius like one used for
smaller supercells; see text for details). CIs (J ’s) vs. distance, from top to bottom: Gd−Gd,
Va−Va, Gd−Va.

3) From simple electrostatic reasoning Va−Va CIs should be repulsive (positive J). This
behaviour for long-range Va−Va CIs is not well reproduced using 3 × 3 × 3 supercells.
However, it is reproduced using 4× 4× 4 supercells (see Fig. S16). Therefore, the 4× 4× 4
supercell is the first supercell to show qualitatively reasonable results (positioning of long-
range Va−Va CIs relative to effective zero).

4) Let us notice that the calculation of larger supercells with DFT is not feasible (e.g. S5
supercell contains 1500 lattice sites). We expect that for larger supercells one would obtain
CIs shifted in comparison to S4. Notwithstanding, the absolute values of our CIs are close to
those obtained by Grieshammer et al.3, where finite size correction was applied (extrapolation
to infinite supercell size).

5) In our case, the application of a finite size correction to CIs (due to the finite supercell size
and long-range nature of the electrostatic interactions) is not well justified as while resolving
one ambiguity — correcting the absolute values of CIs, it might introduce another one — a

3S. Grieshammer, B. O. H. Grope, J. Koettgen and M. Martin, ‘A combined DFT + U and Monte Carlo
study on rare earth doped ceria’, Phys. Chem. Chem. Phys., 16, 9974-9986, 2014.
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Figure S15: Comparison of CIs obtained from 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4 large
supercells. CIs (J ’s) vs. distance from top to bottom: Gd−Gd, Va−Va, Gd−Va.

change of the shape of the potential (a shift of previously effectively zero interactions without
determination of the tail).

Taking into account these arguments and Monte Carlo test simulations we further demon-
strate that CIs obtained using S4 supercells are reliable for Monte Carlo simulations (see
Section 2 for further discussions regarding Monte Carlo simulations).
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Figure S16: Comparison of long-range CIs obtained from 3 × 3 × 3 (210 structures) and
4 × 4 × 4 (168 structures) large supercells. CIs were averaged over 25 cluster expansions,
each was based on 100 random structures from the set. Errorbars show standard deviations.
CIs (J ’s) vs. distance, from top to bottom: Gd−Gd, Va−Va, Gd−Va.
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1.i CIs in the case of no ionic relaxation

In the case of no relaxation, CIs can be fitted with the C + k
R
e−R/λ (see Fig. S17).

Figure S17: Gd−Gd, Va−Va and Gd−Va CIs vs. distance calculated from 210 structures
(set S3 V07 N210 a 540 PS, xGd = 0.1296) with no ionic relaxation. Red lines show fits of
pair CIs with C + k

R
e−R/λ. CIs not included in the fit are labelled in accordance with the

Table 2 (see the main part of this paper).
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1.j List of CIs

Here we list the CIs obtained using set S4 V16 R168 a 5.47 PS (set 12 in Appendix 1 in the
main part of this paper) and H5 (see Tables S4, S5 and S6).

Table S4: Gd−Gd CIs calculated from the set S4 V16 R168 a 5.47 PS (set 12, see Appendix
1 in the main part of this paper). Vector ~r connects interacting Gd−Gd on fcc Ce&Gd
sublattice. |~r| is the length of ~r, and ~rx, ~ry, ~rz — its components. Vectors are given in the
units of CeO2 conventional cell (cF12 in Pearson notation).

|~r| ~rx ~ry ~rz CI (eV)
0.70711 0.5 0.5 0.0 0.07311
1.00000 1.0 0.0 0.0 0.04154
1.22474 1.0 0.5 0.5 0.02693
1.41421 1.0 1.0 0.0 0.01536
1.58114 1.5 0.5 0.0 0.01201
1.73205 1.0 1.0 1.0 -0.00027
1.87083 1.5 1.0 0.5 0.00672
2.00000 2.0 0.0 0.0 0.00677
2.12132 1.5 1.5 0.0 0.00695
2.12132 2.0 0.5 0.5 0.00288
2.23607 2.0 1.0 0.0 0.00250
2.34521 1.5 1.5 1.0 0.00022
2.44949 2.0 1.0 1.0 -0.00069
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Table S5: Va−Va CIs calculated from the set S4 V16 R168 a 5.47 PS (set 12, see Appendix
1 in the main part of this paper). Vector ~r connects interacting Va−Va on simple cubic O&Va
sublattice. |~r| is the length of ~r, and ~rx, ~ry, ~rz — its components. Vectors are given in the
units of CeO2 conventional cell (cF12 in Pearson notation). Column ‘Comment’ refers to
the CIs labeling introduced in the main part of this paper (in order to avoid ambiguities).

|~r| ~rx ~ry ~rz Comment J (eV)
0.50000 0.5 0.0 0.0 - 0.71145
0.70711 0.5 0.5 0.0 - 0.32594
0.86603 0.5 0.5 0.5 3a 0.29047
0.86603 0.5 0.5 0.5 3b 0.40885
0.86603 0.5 0.5 0.5 3c 0.56556
1.00000 1.0 0.0 0.0 4a 0.30724
1.00000 1.0 0.0 0.0 4b 0.18797
1.11803 1.0 0.5 0.0 - 0.03991
1.22474 1.0 0.5 0.5 - 0.06657
1.41421 1.0 1.0 0.0 - 0.10573
1.50000 1.0 1.0 0.5 - 0.06217
1.50000 1.5 0.0 0.0 - 0.15172
1.58114 1.5 0.5 0.0 - 0.02664
1.65831 1.5 0.5 0.5 - 0.05185
1.73205 1.0 1.0 1.0 - 0.02738
1.80278 1.5 1.0 0.0 - 0.01542
1.87083 1.5 1.0 0.5 - 0.01631
2.00000 2.0 0.0 0.0 - 0.04925
2.06155 1.5 1.0 1.0 - 0.00743
2.06155 2.0 0.5 0.0 - 0.00609
2.12132 1.5 1.5 0.0 - 0.02144
2.12132 2.0 0.5 0.5 - 0.01960
2.17945 1.5 1.5 0.5 - 0.00344
2.23607 2.0 1.0 0.0 - 0.01777
2.29129 2.0 1.0 0.5 - 0.00424
2.34521 1.5 1.5 1.0 - -0.00806
2.44949 2.0 1.0 1.0 - 0.00395
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Table S6: Gd−Va CIs calculated from the set S4 V16 R168 a 5.47 PS (set 12, see Appendix
1 in the main part of this paper). Vector ~r connects interacting Gd−Va going from Ce&Gd
sublattice to O&Va sublattice. |~r| is the length of ~r, and ~rx, ~ry, ~rz — its components. Vectors
are given in the units of CeO2 conventional cell (cF12 in Pearson notation).

|~r| ~rx ~ry ~rz J (eV)
0.43301 0.25 0.25 0.25 -0.22400
0.82916 0.75 0.25 0.25 -0.11254
1.08972 0.75 0.75 0.25 -0.07022
1.29904 0.75 0.75 0.75 -0.04455
1.29904 1.25 0.25 0.25 -0.04722
1.47902 1.25 0.75 0.25 -0.02706
1.63936 1.25 0.75 0.75 -0.02110
1.78536 1.25 1.25 0.25 -0.01420
1.78536 1.75 0.25 0.25 -0.02904
1.92029 1.25 1.25 0.75 -0.01359
1.92029 1.75 0.75 0.25 -0.01323
2.04634 1.75 0.75 0.75 -0.01130
2.16506 1.25 1.25 1.25 -0.00853
2.16506 1.75 1.25 0.25 -0.00464
2.27761 1.75 1.25 0.75 -0.00525
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1.k Effect of spatial distribution of Gd and Va on electronic struc-
ture and ionic charges

The above-mentioned list of CIs (Section 1.j) can be used to describe the energetics of
configurations with different degrees of ordering&clustering encountered in this study, as the
underlying electronic structure remains fairly the same. Let us consider two configurations
in 4× 4× 4 supercells – one quite random and another with Gd and Va clustered together
(4 eV lower in energy). In Fig. S18 we show the Density of states (DOS) for both supercells.
Ordering and clustering yields sharpening of DOS peaks (bottom panel in Fig. S18) as
compared to random-like distribution (top panel in Fig. S18), but the shape of DOS and,
most important, energy gaps are very much the same. Similarly, fluctuations of Bader
charges due to the different distribution of ions are estimated to be less than 0.15e for O2–

and ca three times smaller for cations. Similarly, fluctuations of Bader charges due to the
different distribution of ions are estimated to be less than 0.15e for O2– and ca three times
smaller for cations.

Figure S18: Density of states (DOS) of two configurations (4×4×4 supercells). Top panel:
random-like distribution of Gd and Va. Bottom panel: clustering of Gd and Va resembling
phase separation. Eg is the gap between valence band maximum and unoccupied Ce 4f
states. Colour code: yellow – Ce, violet – Gd, red – O, grey – Va.
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2 Supplementary information to the section

Monte Carlo simulations

2.a MC simulations using both different CE cut-off radii and MC
cut-off radii, and different supercell sizes (DFT&CE)

When performing the cluster expansion we use a certain cut-off radius4 RCE
CUT. When per-

forming Monte Carlo simulations we use another cut-off radius RMC
CUT.

Here we would like to consider set S4 V16 R168 PS a 5.40 and CIs obtained from it
using different RCE

CUT: 2.45a, 2.00a, ‘cut like S3’ and ‘cut like S2’ (see Fig. S14). For
each of these four sets of CIs we use a RMC

CUT going from 1.00a to 2.45a. We also consider
set S4 V16 R168 PS a 5.47 (RCE

CUT = 2.45a), set S3 V07 R210 PS a 5.40 (‘cut like S3’) and
set S2 V01-V02-V03 R206 PS a 5.40 (‘cut like S2’). The O−Va short range order (SRO)
parameters (αi) for different coordination shells are shown in Figs. S19, S20, S21, S22, S23,
S24, S25. These serve as fingerprints for the whole structure, therefore, we do not show here
the SRO parameters for CeGd and GdVa.

Regarding the S4 large supercells, from Figs. S19, S20, S21, S22, S23 we conclude the
following:

1) Most accurate simulations show that the ground state solution is the decomposition
into CeO2 and C-type Gd2O3. We further call this solution the ground state (GS).

2) If small RCE
CUT is used (“cut like S2”), Monte Carlo simulations converge to a wrong

GS.

3) For RMC
CUT . 1.45a we find no convergence to the GS.

4) In the interval 1.45a . RMC
CUT . 2.1a apart from the GS solution we also find other

solutions.

5) After RMC
CUT & 2.1a GS solution is stabilised (see, e.g. the tail plateau in Fig. S22).

To the best of our knowledge, RCE
CUT = 2.45a and RMC

CUT & 2.1a guarantee the convergence to
the GS (for both lattice parameters, namely a = 5.402, 5.470 Å).

For comparison we also show the same MC test with the CIs calculated from set
S3 V07 R210 PS a 5.40 (Fig. S24). The GS solution is remarkably stable for RMC

CUT > 1.4a.
This may be attributed to two factors, both originating from the small supercell size, i.e.
the shift of CIs: 1) the negative Va−Va CI corresponding to vector

〈
1, 1

2
, 0
〉

(compare this
Va−Va CI for S3 and S4 in Fig. S15, middle panel); 2) the artificially negative tail of Va−Va
CIs (compare Va−Va CIs for S3 and S4 in Fig. S16, middle panel). Similar MC tests using
CIs derived from S2 large supercells (Fig. S25, S2 V01-V02-V03 R206 PS a 5.40) show no
convincing convergence to any solution.

Let us also mention that CIs obtained from the S3 supercells overestimate TC due to the
above-mentioned reasons, while CIs obtained from the S4 supercells provide convergent TC
for RMC

CUT & 2.1a (see Fig. S26).

Based on the analysis presented in Section 1.h, and the results of our MC tests for the
GDC case, we conclude the following:

4It might be different for different types of interactions.
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1) The cluster expansion should be done using the largest possible supercell size and largest
possible cut-off radius (number of structures should be sufficiently large in order to provide
CV score minimisation).

2) The CIs derived from S4 V16 R168 a 540 PS and S4 V16 R168 a 547 PS sets (RCUT
CE =

2.45a) are trustworthy, and most precise among calculated. To the best of our knowledge, in
Monte Carlo simulations these CIs provide reliable results, converging to the decomposition
into CeO2 and C-type Gd2O3 (RCUT

MC & 2.1a; for both a = 5.402 Å and a = 5.470 Å).

3) The CIs derived from smaller supercells and cut-off radii do not guarantee a reliable
solution (S2) or artificially over-stabilise the GS solution (S3), thus are not reliable.

Notes on the composition of precipitates
As we already mentioned, MC simulations are rather sensitive to the long-range CIs.

Here we briefly summarise the possible outcomes of MC simulations with shorter cut-off
radii. Although such outcomes are computational artefacts, they might be considered as
“competitive phases”. Here we report for the xGd = 0.125 case.

If not sufficiently large cut-off radius is chosen, the phase separation into CeO2 and
CeO2−Gd2O3 can occur. It is, in fact, very similar to the phase separation into CeO2 and
Gd2O3. The CeO2−Gd2O3 forms a precipitate, in which the share of Gd2O3 is ≈ 60%.

The transition temperature and the behaviour of Ce−Gd and Gd−Va SRO parameters
are similar to those of pure precipitates (though absolute values of αi are smaller). The
Va−Va clustering in CeO2−Gd2O3 precipitates depends on the cut-off radius. The O−Va
ordering can also differ within the same precipitate. However, the main feature, i.e. Va−Va
clustering in the

〈
1, 1

2
, 0
〉

shells, is always observed. At the same time, the Va−Va clustering
in the

〈
1
2
, 1
2
, 1
2

〉
shells is reduced and even suppressed. Therefore, the Va−Va clustering along

〈111〉, characteristic for pure C-type Gd2O3, is not present in such CeO2−Gd2O3 precipitates.
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Figure S19: OVa SRO parameters (at 300 K) vs. cut-off radius of MC simulation (xGd =
0.125, 12 × 12 × 12 supercell, annealing from 2000 K to 300 K, 20 K temperature step,
4000 Monte Carlo steps per temperature). CIs obtained using cut-off radius like in the S2
case (thus CIs with R > RCE

CUT are zeros in MC). Legends show coordination shells (O&Va
sublattice). Labels of vectors (shells) are written on the same levels (y coordinates) as the
most long-ranged values of αi’s.
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Figure S20: OVa SRO parameters (at 300 K) vs. cut-off radius of MC simulation (xGd =
0.125, 12 × 12 × 12 supercell, annealing from 2000 K to 300 K, 20 K temperature step,
4000 Monte Carlo steps per temperature). CIs obtained using cut-off radius like in the S3
case (thus CIs with R > RCE

CUT are zeros in MC). Legends show coordination shells (O&Va
sublattice). Labels of vectors (shells) are written on the same levels (y coordinates) as the
most long-ranged values of αi’s.
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Figure S21: OVa short range order parameters (at 300 K) vs. cut-off radius of MC simulation
(xGd = 0.125, 12 × 12 × 12 supercell, annealing from 2000 K to 300 K, 20 K temperature
step, 4000 Monte Carlo steps per temperature). CIs obtained using cut-off radius 2.0 (thus
CIs with R > RCE

CUT are zeros in MC). Legends show coordination shells (O&Va sublattice).
Labels of vectors (shells) are written on the same levels (y coordinates) as the most long-
ranged values of α’s.
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Figure S22: OVa short range order parameters (at 300 K) vs. cut-off radius of MC simulation
(xGd = 0.125, 12 × 12 × 12 supercell, annealing from 2000 K to 300 K, 20 K temperature
step, 4000 Monte Carlo steps per temperature). CIs obtained using cut-off radius 2.45a.
Legends show coordination shells (O&Va sublattice). Labels of vectors (shells) are written
on the same levels (y coordinates) as the most long-ranged values of α’s.
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Figure S23: OVa SRO parameters (at 300 K) vs. cut-off radius of MC simulation (xGd =
0.125, 12× 12× 12 supercell, annealing from 2000 K to 300 K, 20 K temperature step, 4000
Monte Carlo steps per temperature). CIs obtained using cut-off radius 2.45a. Notice that
a = 5.470 Å. Legends show coordination shells (O&Va sublattice). Labels of vectors (shells)
are written on the same levels (y coordinates) as the most long-ranged values of α’s.
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Figure S24: OVa short range order parameters (at 300 K) vs. cut-off radius of MC simulation
(xGd = 0.125, 12 × 12 × 12 supercell, annealing from 2000 K to 300 K, 20 K temperature
step, 4000 Monte Carlo steps per temperature). CIs obtained using cut-off radius usual for
S3 (using set S3 07 R210 PS a 5.40). Legends show coordination shells (O&Va sublattice).
Labels of vectors (shells) are written on the same levels (y coordinates) as the most long-
ranged values of α’s.
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Figure S25: OVa SRO parameters (at 300 K) vs. cut-off radius of MC simulation (xGd =
0.125, 12× 12× 12 supercell, annealing from 1500 K to 300 K, 20 K temperature step, 4000
Monte Carlo steps per temperature). CIs obtained using cut-off radius usual for S2 (using
set S2 V01-V02-V03 R206 PS a 5.40). Legends show coordination shells (O&Va sublattice).
Labels of vectors (shells) are written on the same levels (y coordinates) as the most long-
ranged values of α’s.
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Figure S26: TC vs. RMC
CUT for S3 V07 R210 PS a 5.47 and S4 V16 R168 PS a 5.47 (denoted

as 3× 3× 3 and 4× 4× 4, respectively).
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2.b Reproducing C-type ordering in Gd2O3

The structure of C-type Gd2O3 and, therefore, Va−Va clustering is known from experiments,
providing a test for our CE+MC modeling. The C-type Gd2O3 belongs to the Ia-3 space
group, with the following Wyckoff positions:5 Gd no. 1: 24d (x, 0, 1/4) [x = 0.2815], Gd
no. 2: 8a (0, 0, 0), O no. 1: 48e (x, y, z) [x = 0.0985, y = 0.3628, z = 0.1287, full
occupancy], O no. 2: 16c (x, x, x) [x = 0.125, zero occupancy]. Thus the C-type Gd2O3

unit cell can be seen as the ideal 2 × 2 × 2 CeO2 supercell with displaced Gd no. 1 and O
no. 1, and missing O no. 2, therefore, it can be approximated with the same lattice model
and Hamiltonian.

In short, our CE+MC approach allows to reproduce the correct C-type ordering in Gd2O3.
The MC simulations of Gd2O3 (see Fig. S27) (temperature was gradually reduced from 4000
K to 500 K with a 50 K step) showed the following: 1) below ≈ 3000 K the ordered Gd2O3

phase formed (slight disorder due to thermal fluctuations was detected); 2) below ≈ 1500
K all vacancies were perfectly aligned: infinite non-crossing Va−Va chains in the 〈111〉
directions were formed (i.e. O no. 2 is missing). This clustering can also be seen as a
zigzag-like network of vacancies joint with

〈
1, 1

2
, 0
〉

vectors.
In the case when the CIs obtained from the 2 × 2 × 2 supercells were used, C-type

ordering in Gd2O3 was exactly reproduced only with RMC
CUT = 1.479a, 1.5a (see Figs. S28).

With smaller cut-off radii the ordering is not complete.
In the case when the CIs obtained from the 4×4×4 supercells were used, the convergent

solution was obtained (see Fig. S27).
Thus, these tests show that the stabilisation of the C-type ordering in Gd2O3 phase occurs

only with RMC
CUT & 1.5a (see Figs. S27, S28). This supports the conclusions of Sections 1.h

and 2.a. In principle, one can obtain such a result using 2× 2× 2 supercells, but, since for
the xGd = 0.125 case convergence is bad, we conclude that results based on DFT calculations
with 2× 2× 2 are not trustworthy.

5See C. Artini, M. Pani, A. Lausi, R. Masini, and G. A. Costa, “High Temperature Structural Study of
Gd-Doped Ceria by Synchrotron Xray Diffraction (673K ≤ T ≤ 1073K)”, Inorg. Chem., 53, 10140-10149,
2014.
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Figure S27: OVa short range order parameters (at 500 K) vs. cut-off radius of MC simulation
of Gd2O3 (xGd = 1, 12×12×12 supercell, annealing from 4000 K to 500 K, 50 K temperature
step, 8000 Monte Carlo steps per temperature). CIs obtained using cut-off radius 2.45a (using
set S4 V16 R168 PS a 5.40). Legends show coordination shells (O&Va sublattice). Labels
of vectors (shells) are written on the same levels (y coordinates) as the most long-ranged
values of α’s.
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Figure S28: OVa short range order parameters (at 500 K) vs. cut-off radius of MC simulation
of Gd2O3 (xGd = 1, 12×12×12 supercell, annealing from 4000 K to 500 K, 50 K temperature
step, 8000 Monte Carlo steps per temperature). CIs obtained using cut-off radius 1.5a (using
set S2 V01-02-03 R206 PS a 5.40). Legends show coordination shells (O&Va sublattice).
Labels of vectors (shells) are written on the same levels (y coordinates) as the most long-
ranged values of α’s.
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2.c MC tests regarding number of steps

Here we use the CIs obtained from set S4 V16 R168 a 5.47 PS using RCE
CUT = 2.45a and

RMC
CUT = 2.1749a. Figs. S29, S30, S31 show the energy evolution during MC simulated

annealing.
• Starting from a random configuration well above the transition temperature (1500 K)

the equilibration is reached after ≈ 500 MC steps (MCS) (see Fig. S29).
• At the the TC, order-disorder transition occurs during & 3000 steps. Just above the

transition temperature (≈ TC + 20 K) large energy fluctuations might occur. (See Fig. S30.)
• Starting from a random configuration well below the transition temperature (720 K)

the decomposition occurs in ≈ 2000 MCS (Fig. S31). Starting from a structure ordered at
720 K, the equilibration at 700 K occurs in ≈ 500− 1000 MCS. (See Fig. S31.)

Thus, obviously, the longest equilibration time is required close to the transition tempera-
ture, where roughly 3000 MCS are required. Since the MC simulations with many long-range
interactions are time consuming, we use 3000 MCS for equilibration as a reasonable compro-
mise between the accuracy and computational efficiency. We also collect statistics for 5000
MCS after the equilibration and average the results obtained in 16 independent runs. The
temperature step is 20 K. Since equilibration below and above the transition temperature
happens much faster, we expect the maximal errors to occur around the transition temper-
ature (±20 K) and the error in the determination of the transition temperature, ∆TC ≈ 20
K. The same settings are applied in the simulations with fixed Ce/Gd lattice. We notice
that a small temperature step and 8000 MC steps (in total per temperature) ensure the
correct structure evolution and convergence. Correct structure evolution is also ensured in
our above-mentioned test calculations with 4000 MC steps (per temperature) — in those we
do not focus on the average properties, but rather the final state at 300 K (therefore we do
not need 8000 MC steps per temperature).

Figure S29: E change during MC run above the transition temperature. Block averaged
energy (over 500 steps) is also shown.
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Figure S30: E change during MC run close to the transition temperature. Block averaged
energy (over 500 steps) is also shown.

Figure S31: E change during MC run below the transition temperature. Block averaged
energy (over 500 steps) is also shown.
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2.d Convergence of TC vs. supercell size in Monte Carlo simula-
tions

First, let us notice that the correct ground state structure, i.e. decomposition into CeO2

and C-type Gd2O3 below TC, can be obtained in MC simulations using 6×6×6 supercell or
larger. For smaller supercells finite size comes into play and affects the ground state solution.

Regarding the form of precipitate it should be mentioned that, for, e.g. xGd = 0.1875,
the spherical precipitate is formed using the 16 × 16 × 16 supercell, and cylindrical in the
case of the 12× 12× 12 supercell. The form of precipitate does not affect the structure and
is a minor issue.

Here we consider the convergence of TC vs. supercell size N (N ×N ×N supercell) for
xGd = 0.0625 and 0.25 (see Fig. S32). From the extrapolations shown in Fig. S32 one
can estimate the underestimation of the transition temperature. Thus for the 12× 12× 12
supercell TC is underestimated by ≈ 100 K (xGd = 0.0625) and ≈ 80 K (xGd = 0.25). For
the 16 × 16 × 16 supercell TC is underestimated by ≈ 50 K (xGd = 0.0625) and ≈ 40 K
(xGd = 0.25).

Since underestimation can be evaluated, we can use the 12 × 12 × 12 supercells, which
allows us to save computational resources.

Figure S32: 1/T vs. 1/N for two concentrations. Extrapolations to 1/N → 0 (N →∞) are
shown.
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2.e Regarding ultimate Va trapping in the Gd2O3 precipitate

Fig. S33 shows that when the distribution of Gd atoms is fixed at the position obtained
at 800 K (Gd2O3 precipitate exists), the oxygen vacancies are ultimately trapped. Above
≈ 2500 K O−Va ordering is more random-like. Notice, that even at 4000 K vacancies are
strongly bound to Gd.

Figure S33: Fixed–Gd case (TGd = 800 K), xGd = 0.1875. Selected OVa and GdVa SRO
parameters vs. T are shown in colour, while the rest with dotted lines. Dashed lines
correspond to random distributions.
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