Supporting information

Effects of TiCl₄ Treatment on Structural and Electrochemical Properties of a Porous TiO₂ Layer in CH₃NH₃PbI₃ Perovskite Solar Cells

H. K. Adli^{a†}, T. Harada^{a,*}, S. Nakanishi^a and S. Ikeda^b

^a Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

^b Department of Chemistry, Faculty of Science and Engineering, Konan University Okamoto, Higashinada, Kobe 658-8501, Japan.

[†] Current affiliation: Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Locked Bag No 100, Jeli, 17600, Kelantan, Malaysia.

*Corresponding author: harada@chem.es.osaka-u.ac.jp

Figure S1. FE-SEM images of the surface morphology and cross section of (a) pTiO₂(0), (b) pTiO₂(50) and (c) pTiO₂(100), respectively. SEM images were recorded at an acceleration voltage of 20 kV.

Figure S2. Cl 2p XPS of (a) *p*TiO₂(0), (b) *p*TiO₂(20), (c) *p*TiO₂(50), (d) *p*TiO₂(80) and (e) *p*TiO₂(100).

Figure S3 Nyquist plots of EIS measurements under 100 mW cm⁻² illumination patterns of (a) $pTiO_2(0)$, (b) $pTiO_2(20)$, (c) $pTiO_2(50)$, (d) $pTiO_2(80)$ and (e) $pTiO_2(100)$. Inset shows the equivalent circuit model employed for fitting the Nyquist plot. Rs (ohmic series resistance), R₁ (charge transfer resistance of counter/electrolyte interface), C₁ (capacitance of counter/electrolyte interface), R₂ (charge transfer resistance of $pTiO_2$ /electrolyte interface) and C₂ (capacitance of of $pTiO_2$ /electrolyte interface). For the analyses, constant phase elements were used instead of ideal capacitance in order to improve the quality of fittings.

Figure S4 Photovoltaic performances of the CH₃NH₃PbI₃ perovskite solar cells deposited on pTiO₂ layer treated at different concentrations of TiCl₄ solution treatment for forward scan conditions; (a) short circuit current density (J_{SC}), (b) fill factor, (c) open circuit voltage (V_{oc}) and (d) power conversion efficiency (PCE). Each point represents the average value with standard deviation (error bars).

	R_{s}/Ω	$R_{1}\left/ \Omega \right.$	R_{2}/Ω
<i>p</i> TiO ₂ (0)	27	61x10 ²	19x10 ³
<i>p</i> TiO ₂ (20)	27	61x10 ²	78x10 ²
<i>p</i> TiO ₂ (50)	43	54x10 ²	54x10 ²
<i>p</i> TiO ₂ (80)	31	62x10 ²	33x10 ²
<i>p</i> TiO ₂ (100)	29	55x10 ²	41x10 ²

Table S1 Summary of electrochemical impedance parameters of various $pTiO_2$ samples

Table S2 Summary of electrochemical impedance parameters of $CH_3NH_3PbI_3$ perovskite solar cells based on various $pTiO_2$ samples

	R_{s}/Ω	R_{sc} / Ω	R_{rec} / Ω
<i>p</i> TiO ₂ (0)	30	45x10 ²	11x10 ³
<i>p</i> TiO ₂ (20)	14	$42x10^{1}$	50x10 ²
<i>p</i> TiO ₂ (50)	22	14x10 ²	56x10 ³
<i>p</i> TiO ₂ (80)	20	27x10 ²	40x10 ³
<i>p</i> TiO ₂ (100)	30	63x10 ¹	12x10 ³