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1. Mapping expressions to a spin HDVV model Hamiltonian for linear, helical and
circular arrangements.
1.1.  Systems with borders: linear and helical.
1.2.  Systems without borders: circular.

2. Linear: Calculated absolute energies and energy differences of FM and AFM;
solutions.
Spin density plots associated with different AFM;, solutions for the case
example of N = 10. The other systems present qualitative and quantitatively
the same conclusions.

3. Helical: Calculated absolute energies and energy differences of FM and AFM;
solutions.

4. Ring: Calculated absolute energies and energy differences of FM and AFM;
solutions.

5. Effect of functional and basis set: the case of 7-membered ring.
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1.- Mapping expressions for linear, helical and circular arrangements.

From a general point of view, and assuming the physics of the problem can be
described correctly by means of the HDVV spin Hamiltonian, the procedure used to
extract the coupling constant consists in mapping the diagonal elements of the HDVV
Hamiltonian to the energy expectation value of the high spin and of the different broken
symmetry (BS) solutions. Within the present approach the number of different broken
symmetry (BS) solutions for a given multiplicity can be calculated using the binomial
coefficient Cy ; where N is the number of magnetic centres and i the number of beta spin
densities. For instance, for a N = 6 system, the spin multiplicities range from septet,

quartet and doublet, which corresponds to i = 0,1and 2. Thus, there are Cg;, =

6!
11(6—1)!

= 6 different ways of having one beta density in a six-membered system. As

usual the high spin state is referred to as ferromagnetic (FM) and the different BS

solutions correspond to antiferromagnetic (AFM) arrangements.

Due to the large amount of AFM solutions which are possible for each of the cases
studied it is convenient to find a way to express the energy differences between the FM
and AFM solutions in a more compact manner, applicable to all investigated systems.
To this end we make use of three convenient choices. First, we refer all energy
differences to the FM solution. Second, we assume that all AFM; solutions correspond
to situations in which we progressively increase the number of consecutive spin-down
(beta) densities (located at the extreme of the molecules for linear and helical cases); i
indicates the number of beta densities in the molecule. Thus, AFMs would correspond
to a state with 5 consecutive beta densities at one of the extremes of the molecule.
Third, we also assume that the number of centres present in the molecule allows for the
same number of second nearest neighbour interactions in linear and circular cases and
fourth nearest neighbour interactions for the helix. This is fulfilled for N > 4and N > 7
for linear and helical cases, respectively. Using only these solutions, the energy

differences between FM and AFM;, can be expressed in terms of the coefficients

presented in table SI1 as discussed in more detail below.
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Table SI1. Coefficients to use in eq(2), eq(4) and eq(6).
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Index j is associated to the order of the nearest interacting neighbour whereas index i
refers to how many consecutive beta centres are in the extreme. In order to clarify the
choice of N > 4 and N > 7 for linear and helical cases, let us take the case of N = 6 in
a linear arrangement. In this situation we would have the following solutions: FM =
|aaaaaa), AFM; = |Baaaaa), AFM, = |fBaaaa), AFM; = |BABaaa). It is then
clear that for AFM;, the third consecutive B-spin does not have a fourth nearest
neighbour, which makes the entries in Table SI1 not applicable. For N < 4 and N < 7
in linear and helical cases, the energy expressions are obtained in the same manner; it is

just that there is not a unified expression for all of them.

The DFT-calculated solutions not always correspond to consecutive 8 densities at
one of the extremes. Common scenarios involve consecutive S densities in the middle
of the molecule (in linear and helical cases), consecutive £ density sets at each of the
extremes or randomly alternated £ densities. Those are generically labelled as AFM;-

and the correct ordering of a and g densities is indicated where appropriate.
1.1. Systems with borders: linear and helical.
Linear case.

Assuming second neighbours interactions only, the HDVV Hamiltonian can be

expressed as

AR == )y 8- 3 M
(i,))

Which translates into the following energy difference expressions for any linear system

_ _ 1
(FM|Hjiyear |[FM) — (AFM;|Higeqr [AFM;) = == [A7 -]y + A -] 2
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Where the coefficients A can be obtained from Table SI1 and J, and J, are the first and
second nearest neighbours exchange coupling constants, respectively. It is important to
recall that all AFM;, solutions correspond to situations in which we progressively
increase the number of consecutive beta densities located at the extreme of the

molecules.

Helical case.

Assuming fourth neighbours interactions only, the HDVV Hamiltonian can be

expressed as

ifHDVV __ Iy <
helix — — Z ]ij S; - Sj (3)
(i,j=i+1,2,3,4->

Which translates into the following energy difference expressions for any helical system

(FM|Hperty' |FM) — (AFM;| Hyrry |AFM;) =

X

(4)

1
=5 [Ab i+ A7 T+ AT )5 + AT ]

Where the coefficients A{ can be obtained from Table SI1 and J;, /,, /5 and J, are the
first, second, third and fourth nearest neighbours exchange coupling constants,
respectively. Again, we have to recall that all AFM; solutions correspond to situations in
which we progressively increase the number of consecutive beta densities located at the

extreme of the molecules.

1.2 Systems without borders: Rings.

Here the A coefficients can be also obtained from Table SI1 and J; and J, are the first
and second nearest neighbours exchange coupling constants, respectively. It is
important to recall that all AFM;, solutions correspond to situations in which we
progressively increase the number of consecutive beta densities located at the extreme

of the molecules.

Assuming second neighbours interactions only, the HDVV Hamiltonian can be

expressed as
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(i,j=i+1,2)

Which translates into the following energy difference expressions for any circular
system

(FM|Hying” |FM) = (AFM ) |Hring"|AFM ) = =[A7 - J1 + AF -] ] (6)

Where J; and J, are the first and second nearest neighbours exchange coupling

constants, respectively. Note that Eq. (6) is just twice Eq. (2).
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2. Linear:

Table S12. Absolute energies (a.u.) and energy differences (cm™) of FM and AFM;
solutions. N stands for the number of magnetic centres; i refers to the number of spin-
down centres; AFM;- refers to a AFM solution with the beta densities at each extremes
of the molecule, except for AFM;- for N = 10.

N=4 N=5 N=6
Energy  AErm-arm, Energy AEpym—arm; Energy AEpym-arm,
FM -1311.2931 -1581.0503 -1850.8077
AFM, -1311.2875 -1214 -1581.0448 -1213 -1850.8022 -1212
AFM, -1311.2878 -1166 -1581.0450 -1164 -1850.8024 -1166
AFM, -1850.8024 -1167
AFM,« -1581.0393 -2427 -1850.7966 -2425
AF M+ -1850.7969 -2379
N=7 N =8 N=9
Energy AEFM—AFM(i) Energy AEFM—AFM(L-) Energy AEFM—AFM(L-)
FM -2120.5649 -2390.3223 -2660.0796
AFM, -2120.5594 -1214 -2390.3167 -1217 -2660.0740 -1210
AFM, -2120.5596 -1170 -2390.3170 -1166 -2660.0742 -1165
AFM; -2120.5596 -1170 -2390.3170 -1162 -2660.0742 -1168
AFM, -2390.3170 -1164 -2660.0742 -1165
AFM,- | -2120.5539 -2425 -2390.3112 -2434 -2660.0685 -2420
AFM3- | -2120.5541 -2382 -2390.3114 -2383 -2660.0687 -2375
AFM -+ -2390.3116 -2332 -2660.0689 -2330
N =10 N =12 N =13
Energy  AEpm-arm;  Energy  AEpm-arm,  Energy  AEpm-arm,
FM -2929.8368 -3469.3514 -3739.1087
AFM, -2929.8313 -1216 -3469.3459 -1215 -3739.1032 -1213
AFM, -2929.8315 -1166 -3469.3461 -1167 -3739.1034 -1168
AFM; -2929.8315 -1165 -3469.3461 -1163 -3739.1034 -1166
AFM, -2929.8315 -1169 -3469.3461 -1168 -3739.1034 -1166
AF M, -2929.8315 -1170 -3469.3461 -1169 -3739.1034 -1165
AFMg -3469.3461 -1168 -3739.1034 -1167
AFM,
AFMs« | -2929.8262 -2336
AFM,+ | -2929.8153 -4716
AFMg+ | -2929.8151 -4768
AFM,
N =14
Energy AEFM—AFM(i)
FM [ -4008.8660
AFM, | -4008.8605 1215
AFM, | -4008.8607 1165
AFM, | -4008.8607 11169
AFM, -4008.8607 -1172
AFM; -4008.8607 -1166
AFMg -4008.8607 -1164
AFM, | -4008.8607 1166
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Figure SI1. Density plots (a-blue; g-green) of the different FM and AFM; (1 < i < 5)
found for the linear N = 10 case. y-axis represents the energy difference referred to the
FM ground state and x-axis the number of carbon-centred radicals with beta density. As
observed, each phenyl ring without spin density implies a ~1000 cm™ of destabilization.
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3. Helical:

Table SI 3. Absolute energies and energy differences of FM and AFM; solutions. N
stands for the number of magnetic centres; i refers to the number of g centres. *
indicates that the corresponding solutions were not obtained.

N=4 N=5 N=6
Energy  AErm-arm,,  Energy  AEpy_arm;  Energy  AEpm_arm,
FM -1311.3080 -1581.0752 -1850.8424
AFM, | -1311.3041 -866 -1581.0710 -928 -1850.8382 -918
AFM, | -1311.3048 -701 -1581.0714 -825 -1850.8389 =172
AFM, -1850.8400 -517
AFM,»
AF M+ -1581.0662 -1981 -1850.8329 -2078
AFMs
N=7 N =8 N=9
Energy AEFM—AFM(i) Energy AEFM—AFM(L-) Energy AEFM—AFM(L-)
FM -2120.6105 -2390.37858 -2660.1463
AFM, | -2120.6064 -906 -2390.37443 -912 -2660.1422 -920
AFM, | -2120.6071 -751 -2390.37522 -738 -2660.1425 -853
AFM; | -2120.6077 -616 * * -2660.1443 -457
AFM, * * -2660.1432 684
AF M+ -2390.36955 -1982
AFM,« | -2120.6023 -1809 -2390.36927 -2042 -2660.1378 -1837
AFM,« | -2120.6027 -1712 -2390.37156 -1541 -2660.1286 -3904
AFM -2390.37218 -1404 -2660.1283 -3967
N =10 N =12 N =13
Energy  AEpm-arm;  Energy  AEpm-arm,  Energy  AEpm-arm,
FM -2929.9141 -3469.4506 -3739.21864
AFM, * * -3469.4457 -1076 * *
AFM, * * -3469.4478 -602 * *
AFM, * * -3469.4478 -596 * *
AFM, * * -3469.4480 -556 * *
AFM; * * -3469.4477 -618 * *
AFMg * * -3469.4482 -527 * *
AFMy+ | -2929.9046 -2085 -3739.2096 -1985
AFM,« | -2929.9062 -1730 -3469.4457 -1076 -3739.2115 -1574
AFM5+ | -2929.9073 -1493 -3469.4365 -3081 -3739.2125 -1352
AFM, | -2929.9075 -1452 -3469.4383 -2682 -3739.2134 -1157
AFMs+ | -2929.9077 -1407 -3469.4381 -2742 -3739.2135 -1135
AF Mg+ -3469.4379 -2775 -3739.2131 -1223
N =14
Energy  AEpm-armg,
FM -4008.9865
AFM, * *
AFM, * *
AFM, * *
AFM, * *
AFM; * *
AFM, * *
AFM, * *
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AFM,~ | -4008.9773 -2031
AFM,+ | -4008.9797 -1510
AFM;+ | -4008.9800 -1439
AFM,~ | -4008.9794 -1575
AFMg+ | -4008.9803 -1362
AFMg+ | -4008.9813 -1159
AFM,« | -4008.9767 -2155

Now, by taking the case in which i > 4, for an helix with more than 8 centres, all
AFM; are degenerate according to Eq (3). However, by looking at Table SI3, the entry
for N = 12 clearly shows that this is not the case. Therefore, one should consider higher

order terms like three- or four-body interactions, which is currently under investigation.

In order to facilitate the explanation, we take as an example the case with N = 9.
For this system, AFM,+, AFM5- and AFM,- correspond to the solutions |faaaaaaaf),
|BaaaBaaaB) and |BaaafBaaB), respectively. The reported values in the main text

have been obtained using the set of equations

(FM|Hperiy |[FM) — (AFMy|Hyeyiy | AFMy)

X

(FM|Hhetiy' |FM) — (AF My | Hpelly |AF M)

X

(FM|Hyeliy |[FM) = (AFM3:

Hieiry |AF M)

(FM|HFRYY |[FM) — (AFM,-|HEDYY |AFM,-)

X X

It is worth noting that using the different available sets of equations provides a different
set of magnetic coupling constants; whereas /; and J, remain the same, J; and J, present
important variations ranging from -1245 and 454 to -679 and 113 cm™. Similar

variations are also found for the rest of helical structures.

Also, let us highlight the form of AFM;- solutions for the case of N = 14.
Assuming the same ordering of radical centres along the molecule, those would be
|laaaaaaafaaaaaa), |aaaaaaffaaaaaa), |laaaaaaBfBaaaaa),
laaaaafBpBaaaaa), |aaaaBBBBBaaaaca), |laaaaBBBBBLRacac) and
laaaapBBBBBaaap).
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Table SI 4 presents the calculated exchange coupling constant values for some
representative cases in the series although this is not the main issue here due to the lack
of experimental data to compare with. For the linear cases, we consider first and second
nearest neighbour interactions ({i,j =i+ 1,2)) whereas for the helical case it is
required to include up to the fourth nearest neighbour ({i,j = i + 1,2,3,4)). This is due
to the corresponding short distance between the magnetic centres in the helix (~5, ~6,
~4 and ~4.5 A, for 1%, 2" 3 and 4™ nearest neighbour respectively). For more detailed
information on the different magnetic solutions, the reader is referred to sections 2 and 3
of the supporting information. As observed, the magnetic coupling constants in the
linear molecules remain practically the same throughout the series, where J; is an order
of magnitude larger than J, and of opposed sign. These values are also consistent when
using AFM solutions that display alternate spin down centres. The situation is less clear
for the helical arrangement, as there is a significant variation in the magnitude and sign
of the different two body terms with the number of centres. This might indicate possible
differential effects associated with odd and even number of unpaired electrons.
Additionally, depending on which DFT-computed energies are used to solve the
spectrum, one finds a large variation on J; and J, (see section 3 in the SlI). This is
consistent with the fact that the topological AFM solutions that should be degenerate
according to the present mapping, show considerable splitting when the corresponding
solutions are numerically obtained. These results point to the fact that the low-lying
magnetic states of these helical structures cannot be described by the simple HDVV
model spin Hamiltonian. A more accurate description would then require including
higher order terms in the spin model Hamiltonian such as four body terms, and perhaps
anisotropic D tensor to account for the spin-spin contribution to magnetic anisotropy.
The crucial point here is, however, the consistent prediction of a helical-induced
stabilization of the FM ground state in all cases that can be safely addressed considering
the HDVV spin model Hamiltonian to classify and compare the different spin solutions.

Table SI 4. Energy difference (in cm™) between the FM ground state and lowest excited
AFM solutions, calculated per number of magnetic centres (N) in each of the linear and
helical minima. Middle column shows the stabilization energy (in kcal mol™) per
magnetic centre gained when the helical conformation is adopted as compared to the
linear arrangement. Rightmost column presents the calculated magnetic coupling
constants (in cm™) for both linear and helical systems. * indicates that solutions with all
consecutive spin-down in one of the chain extremes were not converged.

Helical

AEpy—_arm stabilization linear helical
N linear helical A /5 J1 /5 I3 Ja
4 -291  -175 2.3
5 | -283  -165 31 2525 -98 2630  -546 341 -568
6 | -194  -86 3.6 2516 -92 2879 -672  -511 516
7 | -167 -88 4.1 2514 -87
8 | -145 * 4.4 2535 -101 2170 459 -489  -318
9 | -130 -51 4.7 2510 -90 1972 50 -70 -113
10 | -117 * 4.9 2530 -99
12 | -97 -44 5.2 2524 -95 3100 -938 69 -80
13 | -90 * 5.3 2517 91
14 | -83 * 5.4 2528 -99 2552  -450  -207 136
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4. Ring

Table SI 5. Absolute energies (a.u.) and energy differences (cm™) of FM and AFM;
solutions for each of the lowest in energy stationary points. N stands for the number of
magnetic centres; i refers to the number of S centres.

N =4 N=5 N=6
Energy AEpym—armg, Energy  AEpm—arm, Energy AEpym—armg,
FM -1079.02150 -1348.7816 -1618.5418
AFM, -1079.01078 -2353 -1348.7699 -2557 -1618.5315 -2264
AFM, | -1079.011076 -2287 -1348.7727 -1936 -1618.5302 -2541
AFM, -1618.5318 -2206
AFM,- | -1078.999431 -4843
AFM,-
N=7 N=28 N=9
Energy AEpm-armg, Energy  AEpm-arm, Energy AEpm-arm,
FM -1888.293495 -2158.05793 -2427.796774
AFM, | -1888.281783 -2570 -2158.04740 -2311 -2427.785624 -2447
AFM, | -1888.283687 -2153 -2158.04750 -2289 -2427.786289 -2301
AFM; | -1888.284999 -1865 -2158.04760 -2267 -2427.787405 -2056
AFM, -2158.04707 -2384 -2427.786822 -2184
AFM,- | -1888.271828 -4756 -2158.03704 -4586
AF M+ -2158.03636 -4735
AFM,-
N =10 N =12 N =15
Energy  AEpm—army,  Energy  AEpym_arm Energy  AEpy-army;,
FM -2697.573153 -3237.067639 -4046.337946
AFM, | -2697.562049 -2437 -3237.056248 -2500 -4046.326924 -2419
AFM, -2697.5633 -2162 -3237.056267 -2496 -4046.327283 -2340
AFM; | -2697.563797 -2053 -3237.057781 -2164 -4046.328854 -1995
AFM, | -2697.563176 -2190 -3237.057929 -2131 -4046.328104 -2160
AFMs | -2697.563564 -2104 -3237.056682 -2405 -4046.328079 -2166
AFMg -3237.055433 -2679 -4046.327891 -2207
AFM, -4046.327851 -2216
AFM,+ | -2697.55178 -4691 -4046.316079 -4799
AFM;+ | -2697.552322 -4572 -3237.046241 -4696 -4046.308293 -6508
AFM,+ | -2697.552789 -4469 -3237.036897 -6747 -4046.307541 -6673
AFMg+ | -2697.553652 -4280 -3237.025269 -9299 -4046.305886 -7036
AF Mg+ -3237.024709 -9422 -4046.30753 -6675
AF M g+ -4046.318734 -4217
AFM« -4046.318686 -4227




Supporting Information

Table SI 6. Specification of the determinants and corresponding HDVV expressions
associated with each of the ferro- and antiferromagnetic solutions for the cases with 4,
7, 10 and 15 radical centres, for which exchange coupling constants are discussed in the
main text. a stands for spin-up and B for spin-down (positive and negative spin
densities at each of the radical centres respectively. These expressions are to be
compared with the calculated absolute energies presented in Table Sl4.

FM
AFM,
AFM,
AFM,

AFM,-

FM
AFM,
AFM,
AFM,
AFM,
AFMj
AFM,
AFM,

AFM,-
AFM,-
AFM,-
AFMg-
AFM,.
AFMg-
AFM,-

N=4 N=7
Function |i) (i|EERYV i) Function |i) (i|HEPYV i)

|aaaa) —Ji =/, laaaaaaa) —-7/4],—-7/4],

|Baaa) 0 |faaaaaa) —-3/4], —3/4],

|BLaa) —J5 |BRacaac) -3/4],+1/4],

|BBpacaa) —3/41+1/4];

|BaBa) +/1—J, |Bafaaaa) +1/4], —3/4],

N =10 N =15
Function |i) (i|EERYV i) Function |i) (ilafngY i)

laaaaaaaaaay —10/4], —10/4], | leaaaaaaaaaacaaay —15/4], —15/4],
|Baaaaaaaaa) —6/4], —6/4], ||Baaaaaaaaaaaaaay —11/4], —11/4],
|BBaaaaaaac) —6/4], —2/4], | |BBacaaacaacaaaay —11/4],—7/4],
|BBBaaaaaaa) —6/4], —2/4], | |BBBaaaaacacacaa)y —11/4],—7/4],
|BBBLaaaaac) —6/4], —2/4], ||BBBRaaaaaaaacaay —11/4], —7/4],
|BBBARaaaaa) —-6/4],—2/4], |BBBBRaaaacacaay —11/4], —7/4],
|BBBBBBacacacaany —11/4], —7/4],

\BBBBBRRacacaaae) —11/4], —7/4],

|faaaaBaaaa) —-2/4],—-2/4], |faafaaaaaaaaaaa) —-7/4],—-7/4],

|fpaaaaafaca) —2/4],+2/4], | |BaaBaBaaaaaacac) —-3/4],—-7/4],

|BBBaaBaaaa) —-2/4],+2/4], |BaBaafBaaaaaaaa) —-3/4], —3/4],

|BBBaaaBBaca) —-2/4],+6/4], |BaBBaaafBaaaaaa) —-3/4],+1/4],

|pBRaaaBacafBaca) —-3/4],+5/4],

|BBBaBpPacaaaaaa) —7/4]1—3/4],

|BBBaBppfaaaaaac) —7/4]1—3/4];
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Table SI 7. Exchange coupling constants extracted from different sets of equations for
the cases with 4, 7, 10 and 15 radical centres.

N = Expression used i J2
(FM|BAPYV |FM) — (AFM, |BHEDYV | AF M, ) 9987 65
A (FM|AAPYV |FM) — (AFM,|BAPYY |AFM,)
(FM|BAPYV |FM) — (AFM, |BHEDYV | AF M, ) 2492 270
(FM|AAPYV|FM) — (AF M- |HHDYV|AFM,-)
(FM|BAPYV |FM) — (AFM, |BHPYYV | AF M, ) 2087 417
(FM|AAPYV|FM) — (AFM,|AHPYY |AFM,)
(FM|BHPYV |FM) — (AFM,|BHPYYV | AFM, ) ]
7 (FM|BHPVV|EM) — (AFM,|BHDVV |AFM;) 3215 10
ring ring
(FM|BHDYY |FM) — AFM1|H{{,?9VV|AFM1) 2186 384
HDVV
(FM|Hrmg |FM> <AF T‘I.Tl.g >
(FM|AEDYY Fa) — (AP, | BHOVY | aFM,) 271 s
(FM|AAPYV |FM) — (AFM,|BAPYY |AFM,)
(FM|AYY [FM) — (AFM,| BTV |AFM, ) 2821 -384
(FM|AAPYV |FM) — (AFMS|AAPYY |AF M)
(FM|BAPYV|FM) — (AFM, |BHDYV | AF M, )
10 (FM|AAPYV |FM) — (AFM,|BAPYY |AFM,) 2684 247
(FM|BAPYV|FM) — (AFM, |BHDYV | AFM, )
2739 -302
(FM|BHDVV|FM) — (AFM,-|BHDYV | AP M)
(FM|BAPYV |FM) — (AFM, |BEDYV | AF M, ) 2734 297
(FM|AAPYV|FM) — (AFMg |HEDYV|AFM;-)
(FM|BAPYV |FM) — (AFM, |BHDYV | AF M, ) 2498 .79
(FM|AAPYV |FM) — (AFM,|BAPYY |AFM,)
FM|AHPYVIEMY — (AFM, |AHPVY | AFM
(i lfiing 17M) = (A7l [APME) 1670 749
(FMlHrmg |FM> < FM;- |Hrmg |AFM3*>
(FM|BAPYV |FM) — (AFM, |BHPYV | AF M, ) )
(FMlHrmg |FM> <AFM5 |Hrmg |AFM5*>
(FM|BAPYV |FM) — (AFM, |BHPYV | AF M, ) )
HDVV HDVV 2710 291
(FMlHrmg |FM> <AFM6 |Hrmg |AFM6*>
FM|BHPYVIEMY — (AFM, |BHPYVIAFM
<I§M|I-|IHTD”‘%|F|M)> (/iFM IIHZ%QV'/{AFMO) 3040 621
ring 6" ring 6™

Note that for any N, according to HDVV the different AFM solutions showing an
increasing number of consecutive £ densities are degenerate. However, the calculated
energies presented in Table S. I. 4 indicate that there are ~300 cm™ deviations, which
translates into the different J values in Table S. I. 6. This is most likely due to the
assumption that the distance between second neighbours is constant, which is not
always true.
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Table SI 8. Exchange coupling constants (cm™) calculated on the different local
minima for the circular arrangement.

N & J2 J1 J2 J1 J2 J1 J2
1 2 3 4

4 | 2422 -70

5 | 3179 -621

6 | 2323 -59 901 -370

7 | 2987 417 1882 -229

8 | 2338 -22 2566 -124 | 1770 172

9 | 2593 -146 | 1325 519 1222 427 1451 466
10 | 2712 -275
12 | 2504 -4
15 | 2498 -79

Table SI 9. Energy difference (in cm™) between the ferromagnetic ground state (FM)
and lowest excited antiferromagnetic (AFM) solutions, calculated per number of
magnetic centres (N) for the differently substituted ring systems. The characterized
minima are indicated in bold. Middle column shows the energy difference (in kcal mol®
1) between the different minima for a given ring with N magnetic centres, being
minimum 1 the lowest in energy. Rightmost columns presents the calculated magnetic
coupling constants (in cm™) for the lowest energy minima.

. AE between
AEpy-aru (M) minima (Kcalmol™)

1 J2
N | 1 2 3 4 152 1-3 1-4 1
a) R = H or arylmethyl-derivatives
4 -572 2422 -70
5 -387 -454  -353 -8.2 -17.0 3179 -621
6 -367 -27 -17.5 2323 -59
7 | -266 -203 -35.2 2987 -417
8 -283  -270 -269 -209 -1.3 -24.0 -34.2 2333 -22
9 -228 -205 -184  -213 -1.0 -6.6 -17.4 2593 -146
10 | -205 -233 -180 -1.1 -25.6 2712 -275
12 | -178 2504 -4
15 | -133 2498 -79
b) R = Phenyl or triphenylmethyl-derivatives
4 -256 -34.5 -15.8 1078 -26
5 -236
7 -120 -44 -217 -8.7 -22.2 800 40
8 -156 1637 -60
C) PTM-derivatives
4 | -106 -34 | -15.8 | 429 -4
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Table SI 10. Energy difference (in cm™) between the ferromagnetic ground state (FM)
and lowest excited antiferromagnetic (AFM) solutions, calculated per number of
magnetic centres (N) for the ring type systems. The characterized minima are indicated
in bold. For the lowest energy minima, magnetic coupling constants (in cm™) are also
presented. Rightmost column shows the energy difference (in kcal mol™) between the
different minima for a given ring with N magnetic centres, being minimum 1 the lowest
in energy.

N AEpy—arm 1 1> AE between minima
1 2 3 4 1 1-2 1-3 1-14

4 -572 2422 -70

5 -387 -454  -353 3179  -621 -8.2 -17.0

6 -367 -27 2323 -59 -175

7 -266  -203 2987  -417 -35.2

8 -283 -270 -269 -209 | 2333 -22 -1.3 -240 -34.2

9 -228 -205 -184 -213 | 2593  -146 -1.0 -6.6 -17.4

10 | -205 -233 -180 2712  -275 -11 -25.6

12 | -178 2504 -4

15 | -133 2498 -79
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Figure S12. Energy diagram showing the relative position of the molecular orbitals for
the lowest in energy structures found. N represents the number of radical centres in the
ring-like structures.
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5. Effect of functional and basis set: the case of 7-membered ring.

For the 7-centres ring, we have investigated the effect of the functional on the predicted
structures and the energy differences between the ferro- and the relevant
antiferromagnetic solutions. For the latter, we have also studied the impact introduced
by a triple-C polarized quality basis set. Table SI 11 presents the results.

Table SI 11. a) RMDS values in A comparing the predicted optimized geometries by
the different functionals with respect B3LYP, using a 6-31G(d,p) basis set, for
minimum 1. The following three lines indicate the energy difference in cm™ between
the ferro- and the antiferromagnetic solutions with consecutive S-spin densities
obtained with 6-31G(d,p) / cc-pVTZ basis sets. Last row indicates the energy difference
per number of magnetic centres in cm™ between the ground ferromagnetic state and the
lowest in energy antiferromagnetic solution. b) RMDS values in A comparing the
predicted optimized geometries by the different functionals with respect B3LYP, using
a 6-31G(d,p) basis set, for minimum 2. Last row indicates the energy difference in
Kcal/mol between the predicted local minima 1 to 2, as predicted by the different
functionals with the 6-31G(d,p) basis set.

a)

B3LYP TPSS PBEO M06-2X LC-wPBE

RMSD - 0.06 0.02 0.08 0.05

AEpm—arm, -2570 -1765/-1733 -3025/-2933 -2230/-2264 -5027/*
AEpy—aFm, -2153 -1713/-1682 -2504/-2433 -1776/-1800 -4002/*
AEpy—apm, -1865 -1498 / -1477 -2144/-2088 -1501/-1520 -3356/%*

Per centre -266 -214/-211 -306/-298 -214 [ -217 -479 /1 *

b)

RMSD - 0.07 0.06 0.19 0.26
AE1-2 -35.2 -33.8 -35.4 -35.2 -35.1




