Electronic Supplementary Information (ESI)

Enhanced, Robust Light-Driven H₂ Generation by Gallium Doped Titania Nanoparticles

Si Luo,^{a,b} Thuy-Duong Nguyen-Phan,^{a*†} Dimitriy Vovchok,^{a,b} Iradwikanari Waluyo,^c

Robert Palomino,^a Andrew D. Gamalski,^d Laura Barrio,^e Wenqian Xu,^f Dmitry E.

Polyansky,^a José A. Rodriguez^{a,b} and Sanjaya D. Senanayake^{a*}

^a Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, US

^b Department of Chemistry, Stony Brook University, Stony Brook, NY 11790, US

^c Photon Sciences Division, National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, US

^d Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, US

^e CSIC - Instituto de Catalisis y Petroleoquimica Cantoblanco, E-28049 Madrid, Spain
 ^f X-ray Science Division, Advanced Photon Source, Argonne National Laboratory,
 Argonne, Illinois 60439, US

* E-mail: nguyenphanthuyduong@gmail.com (T.-D. N.-P.), ssenanay@bnl.gov (S. D. S).
† Current affiliation: National Energy Technology Laboratory, AECOM, Pittsburgh, PA
15236, US. Email: ThuyDuong.NguyenPhan@netl.doe.gov

Electronic Supplementary Information (ESI) available: Detailed experiment of chopped photocurrent response measurement and Fig. S1-S4 include Rietveld refinement of Ga-doped TiO₂ samples, XRD patterns of Pt loaded Ga-doped TiO₂, time profiles of water splitting reaction, performance comparison with and without Pt co-catalyst, and transient photocurrent response of Pt loaded photocatalysts during light on/off cycles. See DOI: 10.1039/x0xx00000x

Photocurrent response measurement

The photocurrent response was monitored on a Basi Epsilon potentiostat using a threeelectrode cell and a 150 W Xenon arc lamp (with aqueous CuSO₄ filter, 310 nm < λ < 625 nm) as the excitation source. The reference and counter electrodes were Ag/AgCl and Pt wire, respectively, while 0.1 M HClO₄ aqueous solution was used as the electrolyte. A PTFE-coated carbon paper (1.2 cm x 3 cm) coated with oxide material was employed as the working electrode (illuminated area of 0.785 cm²). The working electrode was prepared by electrophoretic deposition using a Keithley 2410A electrometer at the Center for Functional Nanomaterials (BNL). The voltage (120 V) was automatically applied during 5 min depositing a suspension of powder and methanol. After drying at 80 °C, the electrode (circle geometry with 1 cm diameter) was finally annealed at 450 °C for 2 h prior to photoelectrochemical analysis. The on–off light-switching measurement was conducted at 1.25 V (*vs.* Ag/AgCl) by irradiating the front side of working electrode.

Fig. S1. Rietveld refinement of Ga-doped TiO₂ samples.

Fig. S2. XRD patterns of Pt/3.125GaTi and Pt/12.5GaTi samples.

Fig. S3. Time profiles of H₂ evolution over undoped and Ga-doped TiO₂ (A) without and (B) with Pt cocatalyst under UV-Vis irradiation (λ = 310-625 nm).

Fig. S4. (A) Comparison between cocatalyst-free and Pt-assisted H₂ evolution activity over undoped and Ga-doped TiO₂; (B) Transient photocurrent response of Pt/TiO₂ and Pt/Ga-doped TiO₂ during on/off cycles of 150 W Xe lamp illumination (λ = 310-625 nm).