Structure and Stability of Small Lithium-Chloride Li_nCl_m^(0,+1) ($n \ge m$, n = 1-6, m = 1-3) Clusters

Milan Milovanović *a), Suzana Veličković ^{b)}, Filip Veljković ^{b)}, Stanka Jerosimić ^{a)}

^{a)} University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, P.O.Box 47, PAC 105305, 11158 Belgrade, Republic of Serbia

^{b)} University of Belgrade - Vinča Institute of Nuclear Sciences P. O. Box 522, 11001 Belgrade, Republic of Serbia

Table S1. Bond lengths of $LiCl^{(0,+1)}$ (in angstroms) calculated with B3LYP and coupled-cluster methods, in different basis sets.

Table S2. Bond lengths ($C_{2\nu}$ point group) of Li₂Cl (in angstroms) and the Li-Cl-Li angle (in degrees) calculated with B3LYP and coupled-cluster methods, in different basis sets.

Table S3. Geometrical parameters (D_{2h} point group) of Li₂Cl₂: bond lengths (in angstroms) and angles (in degrees) calculated with B3LYP and coupled-cluster methods in different basis sets.

Table S4. The range of heater's temperature and the range of intensities of the most abundant isotope for Li⁺, Li_nCl⁺ (n = 2-6), and Li_nCl_{n-1}⁺ (n = 3-5).

Table S5. Relative energies (that include zero-point vibrational energies *ZPVE*), *ZPVE*, and low/imaginary frequencies of the neutral clusters at B3LYP/ cc-pVQZ level. ΔE and *ZPVE* are in kJ mol⁻¹, frequencies in cm⁻¹.

Table S6. Relative energies (that include zero-point vibrational energies *ZPVE*), *ZPVE*, and low/imaginary frequencies of the cationic clusters at B3LYP/ cc-pVQZ level. ΔE and *ZPVE* are in kJ mol⁻¹, frequencies in cm⁻¹.

Table S7. The occupation numbers of valence s and p natural atomic orbitals in the molecular environment for all chlorine and lithium atoms.

Figure S1. The charge distribution and the highest occupied NBO for cationic Li_nCl_m clusters.

		Bond length					
	Basis set / Method	B3LYP	RCCSD ^{a)}	RCCSD(T) ^{a)}	RCCSD	RCCSD(T)	
	cc-pVTZ	2.023	2.041	2.043	2.029	2.029	
	cc-pVQZ	2.021	2.038	2.040	2.021	2.021	
	aug-cc-pVTZ	2.024	2.046	2.049	2.026	2.029	
	aug-cc-pVQZ	2.021	2.040	2.043	2.018	2.021	
LiCl	cc-pwCVTZ	2.018	2.034	2.035	2.021	2.021	
	cc-pwCVQZ	2.021	2.035	2.037	2.019	2.021	
	aug-cc-pwCVTZ	2.021	2.040	2.043	2.026	2.028	
	aug-cc-pwCVQZ	2.021 2.038 2.040		2.040	2.021	2.023	
	Experimental						
	cc-pVTZ	2.395	2.419	2.420	2.397	2.398	
	cc-pVQZ	2.382	2.412	2.414	2.382	2.382	
	aug-cc-pVTZ	2.390	2.422	2.425	2.382	2.382	
L iCl+	aug-cc-pVQZ	2.382	2.414	2.417	2.367	2.368	
LICI	cc-pwCVTZ	2.382	2.413	2.414	2.392	2.392	
	cc-pwCVQZ	2.382	2.409	2.411	2.382	2.382	
	aug-cc-pwCVTZ	2.382	2.416	2.419	2.394	2.396	
	aug-cc-pwCVQZ	2.382	2.412	2.415	2.382	2.383	
^{a)} Coupled cluster methods that include the correlation of only valence electrons.							
^{b)} Rounded value from Ref. ⁷⁵							

Table S1. Bond lengths of $LiCl^{(0,+1)}$ (in angstroms) calculated with B3LYP and coupled-cluster methods, in different basis sets.

Table S2. Bond length (C_{2v} point group) of Li₂Cl (in angstroms) and the Li-Cl-Li angle (in degrees) calculated with B3LYP and coupled-cluster methods, in different basis sets.

		Li-Cl Bond length						
	Basis set / Method	B3LYP	RCCSD ^{a)}	RCCSD(T) ^{a)}	RCCSD	RCCSD(T)		
	cc-pVTZ	2.178	2.198	2.199	2.180	2.181		
	cc-pVQZ	2.173	2.192	2.194	2.170	2.172		
	aug-cc-pVTZ	2.177	2.201	2.204	2.175	2.177		
	aug-cc-pVQZ	2.174	2.194	2.196	2.164	2.165		
	cc-pwCVTZ	2.173	2.191	2.192	2.176	2.177		
	cc-pwCVQZ	2.173	2.189	2.191	2.171	2.172		
	aug-cc-pwCVTZ	2.174	2.195	2.198	2.178	2.181		
Li ₂ Cl	aug-cc-pwCVQZ	2.174	2.191	2.194	2.173	2.174		
		Angle Li–Cl–Li						
	cc-pVTZ	76.1	74.7	74.7	74.0	74.0		
	cc-pVQZ	76.3	75.0	75.0	73.2	73.2		
	aug-cc-pVTZ	76.3	74.8	74.8	74.2	74.3		
	aug-cc-pVQZ	76.3	75.0	75.0	73.6	73.6		
	cc-pwCVTZ	76.3	74.8	74.9	74.5	74.6		
	cc-pwCVQZ	76.4	75.0	75.0	74.8	74.8		
	aug-cc-pwCVTZ	76.2	74.9	74.9	74.7	74.6		
	aug-cc-pwCVQZ	76.4	75.0	75.0	74.7	74.7		

Table S3. Geometrical parameters (D_{2h} point group) of Li₂Cl₂: bond lengths (in angstroms) and angles (in degrees) calculated with B3LYP and coupled-cluster methods in different basis sets.

	Bond Li–Cl	Bond Cl-Cl	Angle Cl–Li–Cl	
B3LYP/cc-pVTZ	2.202	3.592	109.3	
B3LYP/aug-cc-pVTZ	2.201	3.587	109.2	
B3LYP/cc-pVQZ	2.198	3.582	109.2	
RCCSD(T)/cc-pwCVTZ	2.194	3.564	108.6	
Experimental ^{a)}	2.23 ± 0.03	3.61 ± 0.03	108 ± 4	
^{a)} Ref. ⁷⁷				

Table S4. The range of heater's temperature and the range of intensities of the most abundant isotope for Li⁺, Li_nCl⁺ (n = 2-6), and Li_nCl_{n-1}⁺ (n = 3-5).

Ion clusters	The range of heater's	The range of
	temperature (K)	intensity of cluster
		ions (a. u.)
Li ⁺	1800 - 2700	400.000 - 1.450.000
Li_2Cl^+	1837 – 2676	2500 - 192.000
Li ₃ Cl ⁺	2283 - 2445	1400 - 16000
Li ₄ Cl ⁺	2157 - 2385	1680 - 16200
Li ₅ Cl ⁺	2285 - 2445	800 - 14000
Li ₆ Cl ⁺	1895 – 2155	7000 - 50.000
Li ₃ Cl ₂ ⁺	1953 – 2576	2300 - 180.000
Li ₄ Cl ₃ ⁺	1953 – 2272	1350 - 6150
Li ₅ Cl ₄ ⁺	2184 - 2418	1350 - 5000

Table S5. Relative energies (that include zero-point vibrational energies *ZPVE*), *ZPVE*, and low/imaginary frequencies of the neutral clusters at B3LYP/ cc-pVQZ level. ΔE and *ZPVE* are in kJ mol⁻¹, frequencies in cm⁻¹.

Species	Label	ΔE	ZPVE	Low / imaginary
Species			22 , 2	frequencies
LiCl	1.1.n.1 $(C_{\infty V}, \frac{1}{\Sigma^{+}})$	0.0	3.84	/
Li ₂ Cl	2.1.n.1 (C_{2v} , ${}^{2}A_{1}$)	0.0	6.89	/
	2.1.n.2	77.3	4.52	/
Li ₃ Cl	3.1.n.1 (C_{2v} , ${}^{1}A_{1}$)	0.0	10.71	/
	3.1.n.2	55.0	9.27	/
Li ₄ Cl	4.1.n.1 (C_s , ² A')	0.0	12.91	/
	4.1.n.2	12.9	12.73	26 <i>i</i>
Li ₅ Cl	5.1.n.1 (C_{2v} , ¹ A_1)	0.0	16.12	/
	5.1.n.2	16.4	16.98	/
Li ₆ Cl	6.1.n.1 ($C_{\rm s}$, ² A')	0.0	20.64	/
	6.1.n.2	20.0	19.96	/
	6.1.n.3	22.7	19.42	/
Li ₂ Cl ₂	2.2.n.1 $(D_{2h}, {}^{1}A_{g})$	0.0	13.18	/
	3.2.n.1 $(C_{2v}, {}^{2}A_{1})$	0.0	15.20	/
Li ₃ Cl ₂	3.2.n.2	12.8	14.38	37
	3.2.n.3	39.3	14.50	/
	4.2.n.1 (C_{2v} , ${}^{1}A_{1}$)	0.0	18.29	/
1.01	4.2.n.2	24.0	18.97	/
$L_{14}C_{12}$	4.2.n.3	26.9	19.35	/
	4.2.n.4	37.6	18.10	/
	5.2.n.1 $(C_{\rm s}, {}^{2}{\rm A'})$	0.0	22.82	/
	5.2.n.2	10.2	21.34	24
	5.2.n.3	10.9	21.69	27
	5.2.n.4	11.9	21.35	/
Li ₅ Cl ₂	5.2.n.5	12.3	20.82	45
	5.2.n.6	13.2	19.66	32
	5.2.n.7	16.2	21.28	23, 45
	5.2.n.8	18.9	21.74	/
	5.2.n.9	19.6	19.81	/
	5.2.n.10	29.0	19.51	18i
	5.2.n.11	29.8	19.19	21, 42
L : Cl	3.3.n.1 $(D_{3h}, {}^{1}A_{1}')$	0.0	20.23	/
L1 ₃ Cl ₃	3.3.n.2	52.0	20.44	/
	4.3.n.1 $(C_{3v}, {}^{2}A_{1})$	0.0	25.12	/
	4.3.n.2	16.7	21.74	39
T. CI	4.3.n.3	28.0	22.36	24
$L_{14}C_{13}$	4.3.n.4	29.3	21.32	21 <i>i</i>
	4.3.n.5	29.8	21.99	15
	4.3.n.6	55.6	23.31	/

Table S6. Relative energies (that include zero-point vibrational energies *ZPVE*), *ZPVE*, and low/imaginary frequencies of the cationic clusters at B3LYP/ cc-pVQZ level. ΔE and *ZPVE* are in kJ mol⁻¹, frequencies in cm⁻¹.

Spacias	Label	ΛF a)	7 P I/F a)	Low / imaginary	
species	Lauei			frequencies	
LiCl ⁺	1.1.c.1 ($C_{\infty v}$, ${}^{2}\Pi$)	0.0	2.00	/	
Li_2Cl^+	2.1.c.1 $(D_{\infty h}, {}^{1}\Sigma_{g}^{+})$	0.0	5.99	48, 48	
$I \in C^{1+}$	3.1.c.1 $(C_1, {}^2A)$	0.0	7.21	34	
LI3CI	3.1.c.2	29.5	9.00	/	
	4.1.c.1 (C_{3v} , ${}^{1}A_{1}$)	0.0	14.41	/	
$\mathbf{L} : \mathbf{C} \mathbf{I}^+$	4.1.c.2	7.9	10.63	29, 33, 47	
LI4CI	4.1.c.3	9.8	11.91	35	
	4.1.c.4	120.9	8.12	31, 31	
Li ₅ Cl ⁺	5.1.c.1 ($C_{\rm s}$, ² A')	0.0	16.66	/	
	5.1.c.2	31.2	14.13	34	
	5.1.c.3	34.4	12.44	14, 15, 41	
	5.1.c.4	43.3	12.14	19, 36, 38, 41	
	5.1.c.5	45.3	13.18	34, 50	
	6.1.c.1 ($C_{\rm s}$, ¹ A')	0.0	20.75	/	
	6.1.c.2	9.6	19.87	47	
$I \in C^{1+}$	6.1.c.3	29.2	17.80	31, 31	
LIGCI	6.1.c.4	40.8	15.35	14, 14, 18, 46, 46	
	6.1.c.5	50.7	17.58	28	
	6.1.c.6	67.3	15.30	14, 19, 22, 24, 37	
$I \in C1 +$	2.2.c.1 $(D_{2h}, {}^{2}B_{1u})$	0.0	8.90	34	
LI2CI2	2.2.c.2	48.0	7.59	24, 28	
$I \in C1 +$	3.2.c.1 $(D_{\infty h}, 1\sum_{g}^{+})$	0.0	12.00	20, 21, 30, 30	
LI ₃ CI ₂	3.2.c.2	9.2	16.85	/	
	3.2.c.3	11.5	14.57	43	
	4.2.c.1 ($C_{\rm s}$, ² A')	0.0	18.77	/	
	4.2.c.2	20.6	16.34	17, 27	
	4.2.c.3	27.4	13.79	4, 4, 20, 20	
I i C I +	4.2.c.4	31.1	13.89	12, 27, 31, 34	
	4.2.c.5	34.7	13.61	14, 14, 21, 21, 41, 41	
	4.2.c.6	40.1	16.21	31	
	4.2.c.7	50.6	15.82	39	
	4.2.c.8	63.0	13.50	28, 31, 35, 38	
	5.2.c.1 ($C_{\rm s}$, ¹ A')	0.0	23.30	/	
	5.2.c.2	39.4	18.12	11, 26, 29, 32	
	5.2.c.3	51.0	20.00	25, 28	
	5.2.c.4	54.0	19.84	36, 42	
I i C I +	5.2.c.5	54.3	17.14	4, 7, 18, 19, 41	
L1 ₅ Cl ₂ ⁺	5.2.c.6	55.4	20.83	23, 44, 46	
	5.2.c.7	59.2	19.55	/	
	5.2.c.8	59.6	19.75	29, 30, 46	
	5.2.c.9	70.8	19.29	41, 47	
	5.2.c.10	73.3	21.09	/	

	5.2.c.11	76.8	16.98	19, 22, 27, 31, 38
	3.3.c.1 ($C_{\rm s}$, ² A")	0.0	18.94	/
Li ₃ Cl ₃ ⁺	3.3.c.2	4.6	14.37	17, 24, 30, 45
	3.3.c.3	11.2	16.56	30
	3.3.c.4	12.3	16.93	34
	3.3.c.5	63.2	16.08	4 <i>i</i> , 7
	4.3.c.1 (C_{3v} , ${}^{1}A_{1}$)	0.0	25.22	/
Li ₄ Cl ₃ ⁺	4.3.c.2	51.9	20.41	11, 17, 29, 31
	4.3.c.3	56.0	22.11	29 <i>i</i> , 43
	4.3.c.4	64.5	18.17	12, 16, 19, 22, 26
	4.3.c.5	75.5	22.52	27, 27

Table S7. The occupation numbers of valence s and p natural atomic orbitals in the molecular environment for all chlorine and lithium atoms.

Li _n Cl _m	ΣCl	ΣCl	ΣCl	Ideal	ΣLi	ΣLi	ΣLi	Ideal∑Li
	$\overline{(3s)}$	$\overline{(3p)}$	(3s + 3p)	∑Cl	$\overline{(2s)}$	$\overline{(2p)}$	(2s + 2p)	_
LiCl	1.99	5.92	7.91	8	0.03	0.04	0.07	0
Li ₂ Cl	1.98	5.91	7.89	8	0.88	0.16	1.04	1
Li ₃ Cl	1.96	5.93	7.89	8	1.99	0.21	2.2	2
Li ₄ Cl	1.96	5.93	7.89	8	2.76	0.31	3.07	3
Li ₅ Cl	1.95	5.93	7.88	8	3.78	0.29	4.07	4
Li ₆ Cl	1.95	5.92	7.87	8	4.44	0.59	5.03	5
Li ₂ Cl ₂	3.96	11.80	15.76	16	0.16	0.06	0.22	0
Li ₃ Cl ₂	3.94	11.82	15.76	16	0.98	0.19	1.17	1
Li ₄ Cl ₂	3.92	11.84	15.76	16	2.01	0.19	2.20	2
Li ₅ Cl ₂	3.92	11.82	15.74	16	2.69	0.47	3.16	3
Li ₃ Cl ₃	5.91	17.70	23.61	24	0.24	0.06	0.30	0
Li ₄ Cl ₃	5.88	17.70	23.58	24	1.02	0.17	1.19	1
LiCl ⁺	2.00	4.94	6.94	7	0.02	0.04	0.06	0
Li ₂ Cl ⁺	1.99	5.96	7.95	8	0.02	0.02	0.04	0
Li ₃ Cl ⁺	1.98	5.96	7.94	8	0.90	0.15	1.05	1
Li ₄ Cl ⁺	1.96	5.89	7.85	8	1.72	0.33	2.05	2
Li ₅ Cl ⁺	1.96	5.90	7.86	8	2.53	0.60	3.13	3
Li ₆ Cl ⁺	1.95	5.91	7.86	8	3.48	0.58	4.06	4
$Li_2Cl_2^+$	3.98	10.90	14.88	15	0.06	0.02	0.08	0
$Li_3Cl_2^+$	3.96	11.90	15.86	16	0.08	0.03	0.11	0
$Li_4Cl_2^+$	3.94	11.80	15.74	16	0.93	0.25	1.18	1
$Li_5Cl_2^+$	3.92	11.92	15.74	16	1.84	0.33	2.17	2
Li ₃ Cl ₃ ⁺	5.93	16.75	22.68	23	0.18	0.04	0.22	0
Li ₄ Cl ₃ ⁺	5.91	17.70	23.61	24	0.26	0.06	0.32	0

Figure S1. The charge distribution and the highest occupied NBO for cationic Li_nCl_m clusters.