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I. RADIAL DISTRIBUTION FUNCTIONS

Typical snapshots of a single chain and a polymer melt with neutralizing counterions are

shown in Fig. S1.
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Fig. S1: Snapshot of a charged homopolymer at 25% degree of ionization in (a) single chain and

(b) bulk; neutral monomers, charged monomers and the counterions are presented in white, blue,

and cyan, respectively

The radial distribution functions for charged monomer-charged monomer (gcm−cm(r)),

charged monomer-counterion (gcm−ci(r)) and counterion-counterion (gci−ci(r)) pairs are

shown in Fig. S2 for the smallest (rci = 0.05 σ) and the biggest (rci = 0.50 σ) counterions.

In particular, structural changes due to an approach to the glass transition temperature are

revealed in Fig. S2, which corresponds to the chains simulated without the inclusion of

angular potentials.

II. GLASS TRANSITION TEMPERATURE AND FRACTION OF IMMOBILE

MONOMERS

The glass transition is directly related to the drastic increase of segmental relaxation time

or the decrease of segmental mobility and the fraction of immobile monomers can serve as a

good indicator of an approach to the glass transition process. Therefore, to further confirm

the change of Tg with rci, the number of immobile monomers at a chosen temperature around

the estimated Tg was analyzed. The flexible chains with εr = 10 at T ? = 0.5 were chosen as
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Fig. S2: Radial distribution functions of the charged monomer-counterion gcm−cm(r), charged

monomer-charged monomer gcm−cm(r) and counterion-counterion gci−ci(r) pairs in the polymer

melts containing the flexible chains at εr = 10. Top and bottom panels correspond to rci = 0.05σ

and rci = 0.50σ, respectively.

very similar tendency was observed despite the semi-flexibility and the dielectric constant.

Following the algorithm by Starr et al. [1], the immobile monomers were identified as the

“caged monomers”. The cage size was defined as rcage ≡ 〈r2(tcage)〉1/2, where tcage is the

time scale at which the logarithmic derivative, d(ln〈r2(t)〉)/d(lnt), exhibits a minimum. As

expected, the fraction of immobile (or caged) monomers, i.e., monomers with displacement

less than rcage, was found to gradually reduce with time (Fig. S4(a)). In particular, an initial

fast decay of the fraction of immobile monomers followed by a slower decay was observed.

Changes in the rate of decay due to the changes in the counterion radii result from the

cluster redistribution manifested in the temperature dependent radial distribution functions

and the maximum number of monomers in the cluster of the immobile monomers shown in

Fig. S4(b). For the cluster analysis, we have used a cut-off distance of 1.5 σ. It should be
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Fig. S3: Glass transition temperature, T ∗
g , as a function of the specific volume.

clear from Fig. S4(b) that bigger counterions tend to reduce the number of monomers in

clusters at longer times. However, characteristic cage size for a monomeric bead increases

slightly with an increase in rci, which means that the monomeric beads can traverse further.

10
-1

10
0

10
1

10
2

10
3

10
4

t (τ)

0

0.2

0.4

0.6

0.8

1

f
im

m
o
b
il

e

r
ci

 = 0.05 σ

r
ci

 = 0.125 σ

r
ci

 = 0.25 σ

r
ci

 = 0.375 σ

r
ci

 = 0.50 σ

(a)

10
-1

10
0

10
1

10
2

10
3

10
4

t (τ)

0

5000

10000

15000

20000

m
a
x

(
n

c
l)

r
ci

 = 0.05 σ

r
ci

 = 0.125 σ

r
ci

 = 0.25 σ

r
ci

 = 0.375 σ

r
ci

 = 0.50 σ

(b)

0 0.1 0.2 0.3 0.4 0.5

r
ci

(σ)

0.03

0.04

0.05

0.06

0.07

<
r
2
(
t c

a
g
e
)
>

 (
σ

2
)

(c)

Fig. S4: Evolution of the fraction of immobile monomers (a), maximum cluster size, ncl,(b) with

time at different counterion sizes in the flexible ionic homopolymers at εr = 10, T ? = 0.5. Panel

(c) shows the characteristics size of the cage for a monomeric bead.
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III. MEAN SQUARED DISPLACEMENT (MSD), AVERAGE VORONOI VOL-

UME, FREE VOLUME AND DIFFUSION CONSTANTS
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Fig. S5: MSD of the monomers (a) and counterions (b) in semi-flexible ionic homopolymers at

εr = 50, T ? = 0.8.

In order to understand the role of free volume in ion transport, the Voronoi volume of the

counterions was computed and the free volume was obtained by subtracting the respective

volume of the counterions defined as vci = 4
3
πr3ci. The same analysis was done for the

monomeric beads on the chains and the results are presented in Fig. S6. It is found that the

average Voronoi volume as well as the free volume per counterion and monomer are higher in

the melts containing semi-flexible chains. An increase in rci leads to increase in the average

Voronoi volume and the free volume. Small decrease in the free volume for rci = 0.50σ

results from getting closer to T ?
g due to the increase in T ?

g as shown in Fig. S3.

[1] F. W. Starr, J. F. Douglas, and S. Sastry, The Journal of Chemical Physics 138, 12A541 (2013);

doi: 10.1063/1.4790138
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Fig. S6: (a) Variation of the average Voronoi volume (V ?
v ) with counterion radius, rci at εr = 10,

and the corresponding free volume (V ?
f ) changes are shown in panel (b). The free volumes of a

counterion and the monomeric bead are defined as the average Voronoi volume minus the counterion

volume (= 4π(rci/σ)3/3) and monomeric volume (= 4π(0.5)3/3), respectively.
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Fig. S7: Effects of size of the particles on the relation between diffusion constant and the segmental

relaxation time τs for the chains simulated without the angular potential after deliberately switching

off the electrostatic interactions.
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