Supporting Information

CO2 Electroreduction Performance of Single Transition Metal Atom Supported

on Porphyrin-Like Graphene: A Computational Study

Zhongxu Wang,[‡] Jingxiang Zhao,^{†,‡,*} Qinghai Cai^{†,‡}

[†]Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

[‡]Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, and

College of Chemistry and Chemical Engineering, Heilongjiang Province, Harbin

Normal University, Harbin, 150025, China

* To whom correspondence should be addressed. Email: xjz_hmily@163.com (JZ)

Fig. S1: Schematic diagrams of TM/H substitution reaction for single TM atom supported by porphyrin-like graphene.

Fig. S2. The isosurface of spin-resolved density pictures of CoN₄-embedded graphene:(a) top and (b) side views. The isovalue is set to be 0.01 eÅ⁻².

Fig. S3: The computed band structures of (a) CoN_4 , (b) RhN_4 , and (c) IrN_4 embedded graphenes. The Fermi level was set to zero as denoted by red dotted lines.

Fig. S4. Optimized structures of OCHO species on (a) Co, (b) Rh, and (c) Ir atoms supported by porphyrin-like graphene.