Noncovalent Interactions Underlying Binary Mixtures of

Amino Acid based Ionic Liquids: Insights from Theory.

Soniya S. Rao^a, Libero J. Bartolotti^b and Shridhar P. Gejji^{a*}

^a Department of Chemistry, Savitribai Phule Pune University, Pune 411 007, India. ^b Department of Chemistry, East Carolina University, GreenVille, North Carolina 27858, United States.

Supporting Information

Figure S1	Optimized structures of different conformers of [Bmim][Asp] ion pairs.						
Figure S2	Optimized structures of different conformers of [Bmim][Asn] ion pairs.						
Figure S3	Optimized structures of different conformers of [Bmim][Glu] ion pairs.						
Figure S4	Optimized structures of different conformers of [Bmim][Gln] ion pairs.						
Table S1	Interaction energies (in kJ mol ⁻¹) and an estimation of the dispersion contribution, ΔE_{disp} for (a) [Bmim][Asp] (b) [Bmim][Asn] (c) [MBmim][Glu] and (d) [Bmim][Gln] ion pairs.						
Figure S5	Optimized structures of different [Bmim] ₂ [Glu][Gln] conformers with different cation orientations. Values in parentheses represent relative stabilization energies with respect to the lowest energy conformer in kJ mol ⁻¹ .						
Table S2	Dispersion corrected relative stabilization energies (R.S.E in kJ mol ⁻¹) for [Bmim] ₂ [Asp][Asn] (I) and [Bmim] ₂ [Glu][Gln] (II)systems.						
Table S3	Calculated interaction energies (in kJ mol ⁻¹) using B3LYP and B3LYP-D3 level of theory for $[Bmim]_2[Asp][Asn]$ mixed ILs.						
Table S4	Calculated interaction energies (in kJ mol ⁻¹) using B3LYP and B3LYP-D3 level of theory for $[Bmim]_2[Glu][Gln]$ mixed ILs.						
Figure S6	Optimized structures of different $[Bmim]_2[Asp][Asn]$ conformers at B3LYP level of theory with different cation orientations. Values in parentheses represent relative stabilization energies with respect to the lowest energy conformer in kJ mol ⁻¹ .						
Figure S7	Optimized structures of different $[Bmim]_2[Asp][Asn]$ conformers at B3LYP-D3 level of theory with different cation orientations. Values in parentheses represent relative stabilization energies with respect to the lowest energy conformer in kJ mol ⁻¹ .						
Figure S8	Optimized structures of different [Bmim] ₂ [Glu][Gln] conformers at B3LYP level of theory with different cation orientations. Values in parentheses represent relative stabilization energies with respect to the lowest energy conformer in kJ mol ⁻¹ .						
Figure S9	Optimized structures of different $[Bmim]_2[Glu][Gln]$ conformers at B3LYP-D3 level of theory with different cation orientations. Values in parentheses represent relative stabilization energies with respect to the lowest energy conformer in kJ mol ⁻¹ .						
Figure S10	Color-filled RDG isosurfaces depicting Non-covalent interaction (NCI) regions in (a) [Bmim][Asp] (b) [Bmim][Asn] (c) [MBmim][Glu] and (d) [Bmim][Gln] ion pairs. A plot of reduced density gradient (RDG) on the x-axis versus the sign (λ 2) ρ values on the Y-axis for the same have also been shown.						

- **Figure S11** Infrared spectra of (a) [Bmim][Asp] (b) [Bmim][Asn] (c) [MBmim][Glu] and (d) [Bmim][Gln] ion pairs.
- Figure S12A comparison of selected vibrational frequencies (v =Stretching and $\delta =$ Bending) in (a)
[Bmim]₂[Asp][Asn] and (b) [Bmim]₂[Glu][Gln] complexes. See text for details.

C6 (62.2)

C1 (60.2)

Figure S4

Table	2 S1
-------	------

[Bmim][Asp]			[Bmim][Asn]		
	BE-M05	BE-D3		BE_M05	BE_D3
C14	-419.611	-427.572	C7	-398.342	-406.344
C10	-419.611	-427.572	C4	-390.132	-395.566
C11	-419.611	-427.572	C6	-388.329	-398.204
C1	-403.346	-410.984	C1	-388.328	-398.203
C2	-403.345	-410.983	С3	-383.005	-391.112
С9	-399.909	-405.461	C2	-378.763	-387.811
C5	-379.467	-384.777	С9	-378.762	-387.81
C13	-379.467	-384.777	C5	-355.825	-362.506
C8	-376.914	-387.008	C8	-335.242	-338.28
С3	-370.199	-377.547			
C12	-365.811	-369.847			
C6	-357.371	-405.48			
C4	-348.172	-365.314			
C7	-343.105	-346.128			
	[Bmim][Glu]		[Bmim][Gln]		
	BE_M05	BE_D3		BE_M05	BE_D3
С3	-411.805	-420.66	C5	-411.767	-421.448
C6	-411.689	-419.936	C6	-406.295	-415.608
C5	-411.688	-419.936	C2	-396.731	-407.717
C4	-403.646	-409.264	C4	-391.29	-397.77
C1	-383.434	-397.623	С3	-385.624	-397.686
C2	-370.693	-377.926	C1	-354.608	-360.452

Figure S5 contd.

II_P_mf_C15 (30.97)

II_DA_C1_nn (32.04)

II_P_fn_C10 (35.13)

II_A_C8_mf (35.64)

II_P_fm_C8 (36.70)

II_A_C17_mn (38.04)

II_A_C19_fm (36.95)

II_P_fm_C17 (35.85)

II_A_C2_mn (34.01)

II_P_ff_C13 (30.12)

II_A_C15_mm (31.87)

II_A_C14_mm (34.98)

II_A_C23_nn (35.22)

II_DP_C2_nn (36.67)

II_A_C5_mf (37.47)

II_A_C6_mf (29.36)

II_A_C4_mm (55.50)

II_A_C11_ff (64.42)

Table S2							
Conformers	R.S.E (kJ mol ⁻¹)	Conformers	R.S.E (kJ mol ⁻¹)	Conformers	R.S.E (kJ mol ⁻¹)	Conformers	R.S.E (kJ mol ⁻¹)
I_T_ff_C1	0	I_P_mf_C7	42.9671	II_T_C4_fn	0.0000	II_A_C2_mn	36.1321
I_T_fn_C4	7.293639	I_A_fn_C16	43.10887	II_P_mf_C2	1.3374	II_A_C14_mm	37.9634
I_T_ff_C5	7.293902	I_P_nn_C5	43.55311	II_P_mn_C2	11.5821	II_P_fn_C10	38.4266
I_DA_nn_C1	8.780722	I_T_fn_C3	45.1074	II_A_C21_nn	16.8570	II_A_C22_nn	35.7336
I_DP_nn_C2	12.96262	I_P_mn_C2	50.21164	II_P_nn_C6	14.3426	II_A_C23_nn	35.7336
I_P_nn_C6	13.97055	I_P_fm_C17	50.27675	II_P_mm_C4	20.1670	II_A_C8_mf	38.7154
I_P_fm_C15	17.16421	I_A_mn_C13	52.8886	II_T_C5_ff	17.6357	II_P_fm_C17	34.2465
I_A_mn_C18	19.61432	I_P_mn_C1	53.00071	II_T_C2_fn	25.2476	II_DP_C2_nn	37.5756
I_A_mn_C17	19.81281	I_A_mm_C3	55.25155	II_A_C7_mf	21.7801	II_P_fm_C8	37.8361
I_A_mn_C2	19.8984	I_A_ff_C9	55.25155	II_P_mm_C3	24.4429	II_A_C19_fm	36.1576
I_A_mm_C14	24.28614	I_A_mf_C5	56.5068	II_P_ff_C11	26.9683	II_A_C5_mf	42.9148
I_P_fm_C8	26.34742	I_A_ff_C10	56.50706	II_T_C1_ff	28.2695	II_A_C17_mn	7.4155
I_P_fn_C9	29.33104	I_P_ff_C13	57.18208	II_A_C1_mn	23.7466	II_A_C13_mn	48.4686
I_P_fm_C16	29.3355	I_A_mf_C8	57.84712	II_P_ff_C12	28.6306	II_P_fm_C16	39.8719
I_P_mm_C4	31.33167	I_A_mf_C6	58.17609	II_P_nn_C5	22.3464	II_A_C18_mn	46.5139
I_P_fn_C10	38.36512	I_P_ff_C11	61.34665	II_P_mf_C1	31.1634	II_P_fn_C9	46.3272
I_A_mn_C1	38.46305	I_P_ff_C14	67.07627	II_A_C16_fn	28.9973	II_P_ff_C14	51.2842
I_P_mm_C3	40.78452	I_A_mm_C4	70.82155	II_A_C10_ff	33.5213	II_A_C12_ff	45.0685
I_T_fn_C1	42.12037	I_P_ff_C12	74.65268	II_A_C6_mf	33.2008	II_A_C9_ff	48.8094
I_A_fn_C15	42.55909	I_A_ff_C11	77.15452	II_P_ff_C13	35.2153	II_A_C3_mm	52.2306
I_A_mf_C7	42.68013	I_A_ff_C12	80.07486	II_P_mf_C15	33.8905	II_A_C20_mn	52.6229
				II_T_C3_fn	37.9217	II_A_C4_mm	63.5649
				II_A_C15_mm	36.1371	II_A_C11_ff	58.7261
				II_DA_C1_nn	33.1230		

Conformers@B3LYP	B3LYP	B3LYP Conformers@B3LYP-D3	
I_T_fn_C4	-868.53	I_A_mn_C1	-292.86
I_A_mn_C1	-843.05	I_T_fn_C5	-284.32
I_T_fn_C5	-842.44	I_DA_nn_C1	-282.22
I_A_mn_C17	-841.60	I_A_mn_C17	-281.63
I_T_fn_C3	-838.76	I_DP_nn_C2	-280.55
I_DA_nn_C1	-836.69	I_T_fn_C4	-278.69
I_P_mn_C2	-836.52	I_P_nn_C6	-276.59
I_T_ff_C5	-836.10	I_T_fn_C1	-276.18
I_P_fn_C10	-835.07	I_P_mn_C2	-275.83
I_P_fn_C9	-835.07	I_A_mn_C2	-273.46
I_DP_nn_C2	-831.45	I_A_fn_C15	-271.71
I_A_fn_C16	-831.07	I_P_fm_C8	-270.67
I_T_ff_C1	-830.39	I_P_mf_C7	-270.42
I_A_mn_C18	-824.76	I_P_fm_C15	-270.23
I_P_mm_C1	-824.30	I_P_fn_C9	-270.00
I_P_fm_C17	-823.35	I_A_fn_C16	-267.02
I_P_fm_C8	-822.99	I_P_fn_C10	-266.53
I_A_mm_C14	-822.43	I_P_mm_C1	-266.04
I_P_fm_C16	-820.93	I_A_mn_C18	-265.37
I_A_mn_C2	-820.15	I_T_ff_C1	-260.49
I_P_fm_C15	-818.98	I_P_mm_C3	-259.53
I_P_nn_C6	-818.24	I_P_fm_C17	-259.03
I_P_ff_C12	-817.57	I_A_mm_C14	-258.09
I_P_ff_C11	-816.35	I_P_ff_C13	-253.39
I_A_mf_C6	-815.00	I_P_fm_C16	-247.98
I_P_ff_C13	-814.65	I_T_fn_C3	-246.55
I_P_mf_C7	-813.03	I_P_ff_C12	-245.98
I_A_fn_C15	-810.02	I_P_ff_C11	-243.37
I_P_nn_C5	-807.42	I_P_nn_C5	-242.05
I_P_mm_C3	-804.87	I_A_mf_C6	-241.09
I_A_mf_C8	-804.31	I_A_mf_C7	-240.47
I_A_mf_C7	-802.93	I_A_mn_C13	-235.99
I_A_ff_C10	-801.60	I_A_mf_C8	-231.36
I_P_ff_C14	-800.51	I_A_ff_C10	-231.27
I_A_mm_C4	-794.123	I_A_mm_C3	-228.01
I_A_mn_C13	-794.026	I_A_ff_C9	-228.01
I_P_mm_C4	-792.28	I_A_mm_C4	-227.78
I_A_mf_C5	-790.23	I_A_mf_C5	-226.82
I_A_mm_C3	-786.82	I_P_mm_C4	-222.61

Table S3

I_A_ff_C9	-786.82	I_P_ff_C14	-222.25
I_A_ff_C11	-786.66	I_A_ff_C11	-208.31
I_A_ff_C12	-776.23	I_A_ff_C12	-202.86

Table S4 Calculated interaction energies (in kJ mol⁻¹) using B3LYP and B3LYP-D3 level of theory for $[Bmim]_2[Glu][Gln]$ mixed ILs.

Conformers@B3LYP	B3LYP	Conformers@B3LYP-D3	B3LYP-D3
 II_P_mf_C1	-849.46	II_A_nn_C21	-298.13
II_Ann C21	-849.41	II_P_mf_C1	-282.99
II_P_mm_C3	-834.86	II_DAnn C1	-279.52
II_Ann C22	-829.97	II_Amm C15	-269.32
II_A_nn C23	-829.97	II_Ann C22	-268.83
II_Amm C15	-827.54	II_Ann C23	-268.83
II_Afm C19	-820.88	II_DPnn C2	-267.23
II_DPnn C2	-820.34	II_Afm C19	-261.31
II_Amn C20	-815.77	II_Amn C20	-257.21
II_DAnn C1	-815.72		

I_P_fm_C15 (49.5)

V I_{A} I_{A} I_{A}

I_A_mn_C1 (0.0)

I_DA_nn_C1 (10.6)

I_DP_nn_C2 (12.3)

I_T_fn_C4 (14.1)

I_P_fm_C16 (44.8)

I_P_ff_C11 (49.4)

II_A _fm_C19 (28.5)

II_A _mn_C20 (33.6)

Figure S10

(d)

Figure S11

Figure S12