Electronic Supplementary Information for

# Evidence for Cooperative Na<sup>+</sup> and Cl<sup>-</sup> Binding by Strongly Hydrated L-Proline

Olga A. Dmitrieva,<sup>a</sup> Marina V. Fedotova,<sup>a\*</sup> and Richard Buchner<sup>b\*</sup>

<sup>a</sup>G. A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya st. 1, 153045 Ivanovo, Russia

 $^b {\rm Institut}$  für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany

 $<sup>\</sup>label{eq:constraint} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@mail.ru, Richard.Buchner@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@chemie.uniregensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@chemie.gensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebrus@chemie.gensburg.de} \ensuremath{^{*}\text{To whom correspondence should be addressed; E-mail: hebru$ 

### 1 Methods — Statistical Mechanics

For 1D-RISM site-specific coordination numbers,  $n_{\alpha\beta}$ , were obtained from radial pair distribution functions (PDFs),  $g_{\alpha\beta}(r)$ , as

$$n_{\alpha\beta} = 4\pi\rho_{\beta} \int_{0}^{r_{\min}} g_{\alpha\beta}(r)r^2 \,\mathrm{d}r \tag{S1}$$

where  $\rho_{\beta}$  is the average number density of solvent sites/atoms of kind  $\beta$ . Such partial coordination numbers give the average number of sites/particles of type  $\beta$  in a coordination sphere of radius  $r_{\min}$  around an  $\alpha$  site. The integration limit,  $r_{\min}$ , is defined by the position of the first minimum of the PDF and corresponds to the radius of the first coordination shell around reference site  $\alpha$ .

In the case of 3D-RISM the spatial distribution functions (SDFs),  $g_{\beta}(\mathbf{r})$ , give the spatial distribution of solvent molecules around a solute molecule, which is commonly represented by isodensity surfaces at a selected probability level (see Fig. 6 of the main manuscript). From such SDFs the associated total coordination number of sites  $\beta$  within a shell of volume  $V_{\rm s}$  in contact with the reference molecule can be calculated as

$$n_{\rm t} = \rho_\beta \int_0^{V_{\rm s}} g_\beta(\boldsymbol{r}) \,\mathrm{V} \tag{S2}$$

Since Pro is not a spherical molecule, its hydration shell is also not spherical. Thus, for the calculation of the total water coordination number the previously suggested approximation for the first hydration shell as a closed surface with arbitrary shape was used.<sup>1</sup>

The SDFs can also be used to calculate cylindrical distribution functions (CDFs),  $g_{pyr-\alpha}(z)_R$ , originally derived for describing the local atom density adjacent to planar surfaces of molecules.<sup>2</sup> These CDFs give the probability of finding a specific site at a distance, z, orthogonal to the reference plane xy defined by the central molecule, within a cylinder of radius R.<sup>1,3</sup> For the present investigation such CDFs are a useful tool to characterize the distribution of water molecules above and below the plane of the pyrrolidine ring and to calculate corresponding coordination numbers, see Fig. S1.

#### 2 Methods — Correction for kinetic depolarization

Due to their electric field ions orient surrounding solvent dipoles to some extent. When moving in an external electric field,  $\vec{E}$ , ions therefore exert a torque on surrounding solvent dipoles opposing the tendency of the latter to align with  $\vec{E}$ . This purely dynamical effect, with a finite magnitude at zero frequency, leads to a depolarization of the bulk solvent in addition to solvation effects and accordingly, the experimentally detected bulk-water amplitude,  $S_{\rm b}$ , is reduced by the kinetic dielectric decrement,  $\Delta \varepsilon_{\rm kd}$ , compared to the equilibrium amplitude,  $S_{\rm b}^{\rm eq}$ , reached in the absence of ionic motion.<sup>4</sup> The latter is also reduced compared to the pure solvent because of solvent dilution and, mainly, ion solvation.<sup>5</sup> In electrolytes of salt concentration c the amplitude relevant for calculating the DRS-detected concentration of bulk-like solvent,  $c_{\rm b}$ , and thus of the total effective solvation number,  $Z_{\rm t}$ , is therefore given by

$$S_{\rm b}^{\rm eq}(c) = S_{\rm b}(c) + \Delta \varepsilon_{\rm kd} \tag{S3}$$

The original continuum theory of Hubbard and Onsager<sup>4</sup> (HO) was derived for vanishing salt concentration and thus is problematic when correcting experimental  $S_{\rm b}$  values but recently Sega *et al.*<sup>6</sup> published a phenomenological modification valid also at finite salt concentrations, yielding

$$\Delta \varepsilon_{\rm DD} = p \times \frac{\varepsilon_{\rm w}(0) - \varepsilon_{\infty}(0)}{\varepsilon_{\rm w}(0)} \times \tau_{\rm w}(0) \times \frac{\kappa}{\varepsilon_0} \times \exp[-\kappa_{\rm D}R] \times (\kappa R + 2)/2 \tag{S4}$$

where  $\varepsilon(0) [= 78.368]$  is the static permittivity of the pure solvent,  $\varepsilon_{\infty}(0) [= 3.52]$  is the infinite-frequency permittivity,  $\tau_{w}(0) [= 8.35 \text{ ps}]$  its relaxation time,  $\kappa$  is the solution conductivity,  $\varepsilon_{0}$  the electric field constant and  $\kappa_{D}$  the reciprocal Debye length.<sup>7</sup> For the effective ion size  $R = (r_{+} + d_{w} + r_{-})/2 = 0.284 \text{ nm}$  was chosen, where  $r_{+}$  and  $r_{-}$  are the radii of Na<sup>+</sup> and Cl<sup>-</sup>, and  $d_{w}$  is the diameter of a water molecule.<sup>8</sup> For the hydrodynamic parameter the value for slip boundary conditions, p = 2/3, was chosen as this yielded consistent limiting ionic hydration numbers when used with HO theory for vanishing electrolyte concentrations.<sup>5</sup>

## 3 Supplementary Tables

Table S1: Site-specific coordination numbers,  $n_{\alpha\beta}$ , and corresponding distances,  $r_{\alpha\beta}$  (in brackets), of L-proline in aqueous solutions as a function of Pro concentrations, c(Pro), from 1D-RISM calculations

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|--|
| $\begin{array}{c cccccccccccc} Carboxylate group & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.0                |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carboxylate group  |  |  |  |  |  |  |  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.43               |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.310)            |  |  |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.94               |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.310)            |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.66               |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.175)            |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.41               |  |  |  |  |  |  |  |  |
| $\begin{array}{ccccccc} \mathrm{NH}_2^+ \ \mathrm{group} \\ n_{\mathrm{N1Ow}} & 4.48 & 4.23 & 3.94 & 3.69 & 3.40 & 3.14 \\ (r_{\mathrm{N1Ow}} /\mathrm{nm}) & (0.300) & (0.298) & (0.298) & (0.298) & (0.298) & (0.295) \\ n_{\mathrm{H8Ow}} & 0.90 & 0.87 & 0.82 & 0.78 & 0.75 & 0.70 \\ (r_{\mathrm{H8Ow}} /\mathrm{nm}) & (0.175) & (0.175) & (0.175) & (0.175) & (0.175) \\ n_{\mathrm{H9Ow}} & 0.83 & 0.79 & 0.75 & 0.70 & 0.66 & 0.62 \\ (r_{\mathrm{H9Ow}} /\mathrm{nm}) & (0.173) & (0.170) & (0.170) & (0.170) & (0.170) \\ \end{array}$ | (0.178)            |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\rm NH_2^+$ group |  |  |  |  |  |  |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.84               |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (0.295)            |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.65               |  |  |  |  |  |  |  |  |
| $egin{array}{ccccccc} n_{ m H9Ow} & 0.83 & 0.79 & 0.75 & 0.70 & 0.66 & 0.62 \ (r_{ m H9Ow}/ m nm) & (0.173) & (0.170) & (0.170) & (0.170) & (0.170) & (0.170) \end{array}$                                                                                                                                                                                                                                                                                                                                                                        | (0.175)            |  |  |  |  |  |  |  |  |
| $(r_{\rm H9Ow}/{\rm nm})$ (0.173) (0.170) (0.170) (0.170) (0.170) (0.170)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.57               |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.170)            |  |  |  |  |  |  |  |  |
| Ring carbon atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |  |  |  |  |  |  |  |  |
| $n_{\rm C2Ow}$ 3.88 3.77 3.49 3.13 2.87 2.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.37               |  |  |  |  |  |  |  |  |
| $(r_{ m C2Ow}/ m nm)$ (0.340) (0.338) (0.338) (0.338) (0.338) (0.338)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.335)            |  |  |  |  |  |  |  |  |
| $n_{\rm C3Ow}$ 5.44 5.31 4.94 4.50 4.14 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.49               |  |  |  |  |  |  |  |  |
| $(r_{ m C3Ow}/ m nm)$ (0.355) (0.355) (0.355) (0.353) (0.350) (0.350)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.350)            |  |  |  |  |  |  |  |  |
| $n_{\rm C4Ow}$ 6.68 6.37 5.97 5.64 5.38 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.59               |  |  |  |  |  |  |  |  |
| $(r_{ m C4Ow}/ m nm)$ (0.350) (0.350) (0.348) (0.348) (0.348) (0.348) (0.345)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (0.345)            |  |  |  |  |  |  |  |  |
| $n_{\rm C50w}$ 6.96 6.60 6.15 5.80 5.36 4.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.51               |  |  |  |  |  |  |  |  |
| $(r_{ m C5Ow}/ m nm)$ (0.323) (0.323) (0.323) (0.323) (0.320) (0.320)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.320)            |  |  |  |  |  |  |  |  |
| $H_2O$ sandwiching pyrrolidine ring <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |  |  |  |  |  |  |  |  |
| $n_{\rm pyr-Ow}$ 1.04 0.98 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.56               |  |  |  |  |  |  |  |  |
| Hydrophilic sites: $n_{\rm h} = n_{\rm O10w} + n_{\rm O20w} + n_{\rm N10w}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |  |  |  |  |  |  |  |  |
| $n_{\rm h}$ 19.53 17.95 16.25 15.39 13.88 12.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.21              |  |  |  |  |  |  |  |  |
| Total number of first-shell $H_2O$ molecules, $n_t$ (3D-RISM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |  |  |  |  |  |  |  |  |
| $n_{\rm t}$ 25.4 24.0 22.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.2               |  |  |  |  |  |  |  |  |

<sup>*a*</sup> Data for hydrophilic sites taken from Fedotova and Dmitrieva<sup>9</sup>; <sup>*b*</sup> from CDF peaks at z = 0.360 nm (6M: 0.340 nm) and -0.340 nm, see Fig. S1.

Table S2: 1D-RISM results for site-specific coordination numbers,  $n_{\alpha\beta}$ , and corresponding distances,  $r_{\alpha\beta}$  (in brackets), of L-proline in aqueous Pro+NaCl solutions of c(Pro) = 0.6 M, and c(NaCl)

| $c({ m NaCl})/{ m M}$                                                       | 0                 | 0.2                             | 0.5        | 1.0     | 1.5     | 2.0     |  |  |
|-----------------------------------------------------------------------------|-------------------|---------------------------------|------------|---------|---------|---------|--|--|
| Carboxylate group                                                           |                   |                                 |            |         |         |         |  |  |
| $n_{O1Ow}$                                                                  | 7.43              | 7.44                            | 7.35       | 7.27    | 7.20    | 7.12    |  |  |
| $(r_{ m O1Ow}/ m nm)$                                                       | (0.310)           | (0.310)                         | (0.310)    | (0.310) | (0.310) | (0.310) |  |  |
| $n_{\rm O2Ow}$                                                              | 6.65              | 6.67                            | 6.60       | 6.53    | 6.49    | 6.42    |  |  |
| $(r_{ m O2Ow}/ m nm)$                                                       | (0.313)           | (0.313)                         | (0.313)    | (0.313) | (0.313) | (0.313) |  |  |
| $n_{ m O1Hw}$                                                               | 2.12              | 2.11                            | 2.09       | 2.06    | 2.04    | 2.01    |  |  |
| $(r_{ m O1Hw}/ m nm)$                                                       | (0.175)           | (0.175)                         | (0.175)    | (0.175) | (0.175) | (0.175) |  |  |
| $n_{ m O2Hw}$                                                               | 1.83              | 1.82                            | 1.80       | 1.77    | 1.75    | 1.73    |  |  |
| $(r_{ m O2Hw}/ m nm)$                                                       | (0.178)           | (0.178)                         | (0.178)    | (0.178) | (0.178) | (0.178) |  |  |
| $\rm NH_2^+$ group                                                          |                   |                                 |            |         |         |         |  |  |
| $n_{ m N1Ow}$                                                               | 4.31              | 4.28                            | 4.23       | 4.16    | 4.11    | 4.04    |  |  |
| $(r_{ m N1Ow}/ m nm)$                                                       | (0.298)           | (0.298)                         | (0.298)    | (0.298) | (0.298) | (0.300) |  |  |
| $n_{ m H8Ow}$                                                               | 0.87              | 0.86                            | 0.85       | 0.84    | 0.82    | 0.81    |  |  |
| $(r_{ m H8Ow}/ m nm)$                                                       | (0.175)           | (0.175)                         | (0.175)    | (0.175) | (0.175) | (0.175) |  |  |
| $n_{ m H9Ow}$                                                               | 0.79              | 0.79                            | 0.77       | 0.76    | 0.74    | 0.73    |  |  |
| $(r_{ m H9Ow}/ m nm)$                                                       | (0.170)           | (0.170)                         | (0.170)    | (0.173) | (0.173) | (0.173) |  |  |
|                                                                             |                   | Ring ca                         | rbon ator  | ns      |         |         |  |  |
| $n_{ m C2Ow}$                                                               | 3.91              | 3.88                            | 3.85       | 3.80    | 3.63    | 3.58    |  |  |
| $(r_{ m C2Ow}/ m nm)$                                                       | (0.340)           | (0.340)                         | (0.340)    | (0.340) | (0.340) | (0.340) |  |  |
| $n_{\rm C3Ow}$                                                              | 5.46              | 5.27                            | 5.39       | 5.33    | 5.29    | 5.23    |  |  |
| $(r_{ m C3Ow}/ m nm)$                                                       | (0.353)           | (0.353)                         | (0.353)    | (0.353) | (0.353) | (0.353) |  |  |
| $n_{\rm C4Ow}$                                                              | 6.51              | 6.48                            | 6.42       | 6.34    | 6.30    | 6.23    |  |  |
| $(r_{ m C4Ow}/ m nm)$                                                       | (0.350)           | (0.350)                         | (0.350)    | (0.350) | (0.350) | (0.350) |  |  |
| $n_{ m C5Ow}$                                                               | 6.72              | 6.68                            | 6.61       | 6.51    | 6.45    | 6.36    |  |  |
| $(r_{ m C5Ow}/ m nm)$                                                       | (0.323)           | (0.323)                         | (0.323)    | (0.323) | (0.323) | (0.323) |  |  |
| Hydrophilic sites: $n_{\rm h} = n_{\rm O1Ow} + n_{\rm O2Ow} + n_{\rm N1Ow}$ |                   |                                 |            |         |         |         |  |  |
| $n_{ m h}$                                                                  | 18.39             | 18.39                           | 18.18      | 17.96   | 17.80   | 17.58   |  |  |
| Na <sup>+</sup> -carboxylate interactions                                   |                   |                                 |            |         |         |         |  |  |
| $n_{\rm O1Na}$                                                              |                   | ·                               | 0.04       |         |         | 0.14    |  |  |
| $(r_{ m O1Na}/ m nm)$                                                       |                   |                                 | (0.258)    |         |         | (0.258) |  |  |
|                                                                             | $\mathrm{Cl}^{2}$ | NH <sub>2</sub> <sup>+</sup> gr | oup intera | actions |         |         |  |  |
| $n_{ m H8Cl}$                                                               |                   | 20                              | 0.02       |         |         | 0.08    |  |  |
| $(r_{ m H8Cl}/~ m nm)$                                                      |                   |                                 | (0.188)    |         |         | (0.188) |  |  |
| $n_{\rm H8Cl}$                                                              |                   |                                 | 0.02       |         |         | 0.0.08  |  |  |
| $(r_{ m H8Cl}/~ m nm)$                                                      |                   |                                 | (0.183)    |         |         | (0.183) |  |  |

## 4 Supplementary Figures



Figure S1: (a) Cylindrical distribution functions,  $g_{\text{pyr}-\text{Ow}}(z)_R$  and  $g_{\text{pyr}-\text{Hw}}(z)_R$  (R = 0.126 nm), for H<sub>2</sub>O hydrating the pyrrolidine ring of Pro at  $c(\text{Pro}) \rightarrow 0$ ; (b) Concentration dependence of  $g_{\text{pyr}-\text{Ow}}(z)_R$  for aqueous L-proline solutions.



Figure S2: Spectra of (a) relative permittivity,  $\varepsilon'(\nu)$ , and (b) dielectric loss,  $\varepsilon''(\nu)$ , of aqueous L-proline solutions at 25 °C and concentrations c(Pro) / M = 0 (1), 0.395 (2), 0.981 (3), 1.944 (4), 3.805 (5), 5.569 (6). Symbols show experimental data, the lines give fits with the D+D+D model.



Figure S3: Relaxation amplitudes of the solute mode,  $S_1$  ( $\blacktriangle$ ), of slow water,  $S_s = S_2$  ( $\blacktriangledown$ ), and of bulk-like water,  $S_b$  ( $\bigcirc$ ) of aqueous L-proline solutions at 25 °C and solute concentrations c(Pro). Lines are guide to the eye; the open symbol is pure water.



Figure S4: Relaxation times of the solute mode,  $\tau_1$  ( $\blacktriangle$ ), of slow water,  $\tau_s = \tau_2$  ( $\triangledown$ ), and of the cooperative relaxation of bulk-like water,  $\tau_3$  ( $\bigcirc$ ) of aqueous L-proline solutions at 25°C and solute concentrations c(Pro). Lines are guide to the eye; the open symbol is pure water.



Figure S5: Minimum-energy structures of  $\text{Pro}\cdot n\text{H}_2\text{O}$  (n = 0...4) complexes and their associated dipole moments,  $\mu$ , obtained with Gaussian (B3LYP/cc-pVDZ level with C-PCM solvation model).<sup>10,11</sup> The arrow indicates the dipole direction.



Figure S6: Pair distribution functions  $g_{\rm N1Ow}(r)$  (solid lines) and  $g_{\rm N1Hw}(r)$  (broken lines) of aqueous L-proline solutions at 25 °C.



Figure S7: (a) Pair distribution functions  $g_{O1Ow}(r)$  (solid lines) and  $g_{O1Hw}(r)$  (broken lines) of aqueous L-proline solutions at 25 °C. (b) Corresponding functions  $g_{O2Ow}(r)$  (solid lines) and  $g_{O2Hw}(r)$  (broken lines).



Figure S8: Pair distribution functions  $g_{\rm H8Ow}(r)$  (a) and  $g_{\rm H9Ow}(r)$  (b) of aqueous L-proline solutions at 25 °C.



Figure S9: Spectra of (a) relative permittivity,  $\varepsilon'(\nu)$ , and (b) dielectric loss,  $\varepsilon''(\nu)$ , of solutions of NaCl in 0.6 M aqueous L-proline at 25 °C and concentrations c(NaCl) / M = 0, 0.205, 0.999, 1.513, 2.023 increasing in arrow direction. Symbols show experimental data (partly omitted for clarity), the lines give fits with the D+D+D+D model.



Figure S10: Experimental bulk-water amplitude,  $S_{\rm b}$  ( $\bullet$ ), and corresponding equilibrium amplitude after correction for kinetic depolarization,  $S_{\rm b}^{\rm eq}$  ( $\blacktriangle$ ), of NaCl solutions of concentration  $c({\rm NaCl})$  in 0.6 M aqueous L-proline at 25 °C. Also included is the amplitude,  $S_{\rm w}$ , expected from the analytical water concentration. The difference  $S_{\rm w} - S_{\rm b}^{\rm eq}$  yields the total concentration of bound water.



Figure S11: Cylindrical distribution functions,  $g_{\text{pyr-Ow}}(z)_R$  (R = 0.126 nm), for H<sub>2</sub>O hydrating the pyrrolidine ring of Pro at c(Pro) = 0.6 M and c(NaCl) = (0, 0.5 and 2.0) M.



Figure S12: (a) Pair distribution functions  $g_{O1Ow}(r)$  (solid lines) and  $g_{O1Hw}(r)$  (broken lines) of NaCl solutions in 0.6 M aqueous L-proline at 25 °C. (b) Corresponding functions  $g_{N1Ow}(r)$  (solid lines) and  $g_{N1Hw}(r)$  (broken lines).



Figure S13: (a) Pair distribution functions  $g_{O1Na}(r)$  and  $g_{O2Na}(r)$  of 0.5 M and 2.0 M NaCl in 0.6 M aqueous L-proline at 25 °C. (b) Corresponding functions  $g_{H8Cl}(r)$  and  $g_{H9Cl}(r)$ .



Figure S14: Effective dipole moment,  $\mu_{\text{eff}}$  ( $\bullet$ ), of L-proline-ion aggregates as a function of NaCl concentration, c(NaCl), in 0.6 M L-proline(aq) at 25 °C obtained from the experimental amplitude  $S_1$  corrected for ion-cloud relaxation. Also shown are the minimum-energy structures of pro·Na<sup>+</sup>, pro·Cl<sup>-</sup> and pro·NaCl aggregates and their dipole moments obtained with Gaussian (B3LYP/cc-pVDZ level with C-PCM solvation model).<sup>10,11</sup> The arrow indicates the dipole direction.

#### References

- [1] M. V. Fedotova and S. E. Kruchinin, J. Mol. Liq., 2013, **179**, 27–33.
- [2] A. Plugatyr, I. Nahtigal and I. M. Svishchev, Chem. Phys., 2006, 124, 024507–024515.
- [3] M. V. Fedotova and S. E. Kruchinin, J. Mol. Liq., 2013, **186**, 90–97.
- [4] (a) J. B. Hubbard and L. Onsager, J. Chem. Phys., 1977, 67, 4850-4857; (b) J. B. Hubbard, J. Chem. Phys., 1978, 68, 1649-1664; (c) J. B. Hubbard, P. Colonomos and P. G. Wolynes, J. Phys. Chem., 1979, 71, 2652-2661.
- [5] R. Buchner and G. Hefter, *Phys. Chem. Chem. Phys.*, 2009, **11**, 8984–8999.
- [6] M. Sega, S. Kantorovich and A. Arnold, Phys. Chem. Chem. Phys., 2015, 17, 130-133.
- [7] J. O. Bockris and A. K. N. Reddy, *Modern Electrochemistry*, Plenum, New York, 2nd edn, 1998, vol. 1.
- [8] Y. Marcus, Ion Properties, Wiley, Chichester, 1997.
- [9] M. V. Fedotova and O. A. Dmitrieva, Russ. J. Phys. Chem. A, 2014, 88, 794–797.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Kiene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09, Revision B.01*, Gaussian Inc.: Wallingford CT, 2010.
- [11] M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669–681.