Electrolyte containing lithium cation in squaraine-sensitized solar cells: interactions and consequences on the performances and charge transfer dynamics

Vittoria Novelli¹⁻², Nadia Barbero³, Claudia Barolo³, Guido Viscardi³, Michel Sliwa⁴, Frédéric Sauvage^{1-2*}

¹ Laboratoire de Réactivité et Chimie des Solides (LRCS, CNRS UMR 7314), Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens Cedex, France.

² Institut de Chimie de Picardie (FR CNRS 3085), Amiens Cedex, France.

³ Dipartimento di Chimica and NIS and INSTM Reference Centre, Università degli Studi di Torino, Via P. Giuria 7,10125 Torino, (Italy)

⁴Univ. Lille, CNRS, UMR 8516 - LASIR - Laboratoire de Spectrochimie Infrarouge et Raman, F-59000 Lille, France

Supporting Information

Figure S1. Photo-luminescence decay of VG1 (0.1 mM) in ethanol solution with different concentration of CDCA. The bi-exponential reconvolution and the IRF is also reported for each PL decay.

Figure S2. 2D (a) and 3D (b) mapping of the emission/excitation steady state spectra of VG1 0.1 mM dye solution in Ethanol without and with 10 mM of CDCA.

Figure S3. Time-resolved PL decays for VG1-based DSSC containing different amount of Li⁺ in the electrolyte. The reconvoluted exponentials decays are indicated by the plain line.

Figure S4. Example of femtosecond transient decay (dot) of VG1-based DSSC probed at 508 nm, 555 nm and 590 nm (pumped at 640 nm) for an electrolyte-free of lithium. The solid line corresponds to the fit of the decay with a sum of two stretched exponentials.

Time / ps

Figure S5. Mass spectrogram of VG1 alone in ethanol (a) and containing an equivalent of LiI corresponding to a complete device including an electrolyte with 500 mmol/L (7.4.10⁻⁵ mol of LiI) (b).

