Ab initio study of Li, Mg and Al insertion into rutile VO₂: Fast diffusion and enhanced voltages for multivalent batteries

Vadym V. Kulish, Daniel Koch and Sergei Manzhos*

Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576

E-mail: mpemanzh@nus.edu.sg (S. Manzhos)

Supporting information

Table S1. Relative total energies (in meV per formula unit) of FM and AFM VO2 and Li-VO2. Zero energy is referenced to FM state

	VO ₂	Li _{0.33} VO ₂	Li _{0.5} VO ₂	LiVO ₂
FM	0	0	0	0
AFM	+45	+43	+53	+52

Composition	V _(V) (rutile)	V (V) (monoclinic)
Li _{0.03} VO ₂	-3.50	-3.27
Li _{0.25} VO ₂	-2.81	-2.59

Table S2. Voltage for Li insertion in rutile and monoclinic phases of VO_2