Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

# **Electronic Supplementary Information (ESI)**

# Novel benzodithiophene-based polymer acceptors for efficient organic solar

cells

Yan-Ling Wang<sup>a, b</sup>, Quan-Song Li<sup>a,\*</sup>, Ze-Sheng Li<sup>a,\*</sup>

- <sup>a</sup> Key Laboratory of Cluster Science of Ministry of Education, Beijing Key laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
- <sup>b</sup> College of Chemical Engineering and Food Science, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P. R.

of China

#### Section S1. Computational Details about Marcus Rate Parameters

The charge transport is considered as a hopping process in the organic materials,<sup>1</sup> which can be evaluated by the Marcus model. The electron mobility ( $\mu$ ) was evaluated from the diffusion coefficient, *D*, with the Einstein equation<sup>2</sup> as follows

$$\mu = \frac{eD}{k_B T} \tag{S1}$$

where *e* represents the electronic charge, and *D* represents diffusion coefficient<sup>3</sup> which can be approximately evaluated by<sup>2</sup>

$$D = \lim_{t \to \infty} \frac{1}{2d} \frac{\left\langle x(t)^2 \right\rangle}{t} \approx \frac{1}{2d} \sum_i r_i^2 k_i p_i$$
(S2)

where *i* is a given transfer pathway and  $r_i$  is defined as the charge hopping centroid-to-centroid distance, *d* (*d*=3) is defined as spatial dimensionality, and  $p_i$  ( $p_i = \frac{k_i}{\sum k_i}$ ) is the relative probability for charge hopping to a

particular ith neighbor.

Additionally, when considering only two adjacent molecular fragments, D is simply estimated by:4

$$D = \frac{1}{2}k_{CT}r^2 \tag{S3}$$

where  $k_{CT}$  and r are the charge transfer rate and intermolecular distance for dimer. Herein, the electron mobility is defined as: <sup>5</sup>

$$\mu = \frac{er^2}{2k_B T} k_{CT} \tag{S4}$$

The electron mobility is directly proportional to the electron transport rate ( $k_{CT}$ ). According to the Marcus-Hush theory, the electron transport rate ( $k_{CT}$ ) between the neighboring sites is expressed as:<sup>6</sup>

$$k_{CT} = \frac{4\pi^2 \upsilon^2}{h} \sqrt{\frac{1}{4\pi\lambda k_B T}} \exp\left(\frac{-\lambda}{4k_B T}\right)$$
(S5)

where h, v,  $k_{\rm B}$ , T, and  $\lambda$  are the Planck's constant, charge transfer integral between adjacent molecular segments, Boltzmann constant, temperature, and inner reorganization energy, respectively. The inner reorganization energy ( $\lambda$ ) was obtained by four-point method <sup>5, 7, 8</sup>

$$\lambda = (E_0^- - E_-) + (E_-^0 - E_0)$$
(S6)

where  $E_0$  and  $E_-$  represent the energies of neutral and anion segments in their lowest energy geometries, respectively.  $E_-^0$  denotes the energy of neutral segment at anion state, and  $E_0^-$  is the energy of anion segment with the neutral optimized geometry.

The electron-transfer integral (v) of the adjacent neutral optimized acceptor molecules is given by the following eq (7), which is equal to half of the energy difference between the LUMO+1 (L+1) and the LUMO (L) of the interactive segment pairs, respectively.<sup>5</sup>

$$\upsilon = \frac{E_{L+1} - E_L}{2} \tag{S7}$$

In addition, the electron transfer distance and the fraction of electron exchange for all trimer models were

calculated.<sup>9</sup> The total electron density difference ( $\sum_{i \to j} \partial_{i \to j}$ ) after photoexcitation between the starting and final

states could be expressed as the sum of all molecular orbital transitions including each participating excitation  $i \rightarrow j$  (*i* and *j* are the starting and final molecular orbital, respectively.)<sup>7,9</sup>:

$$\partial_{i \to j} = \frac{C_{i \to j}^2}{\sum C_{i \to j}^2} \left( \rho_i - \rho_j \right)$$
(S8)

 $C_{i \rightarrow j}$  represents the orthogonal coefficient of the TD-DFT equation.  $\rho_i$  and  $\rho_j$  represent the electron densities of the each

participating molecular orbital with respect to the transitions<sup>5, 10</sup>

$$\rho_{r} = \sum_{i} \eta_{i} \left| \varphi_{i}(r) \right|^{2} = \sum_{i} \eta_{i} \left| C_{j,i} \chi_{i}(r) \right|^{2}$$
(S9)

where  $\eta_i$ ,  $\chi$ , and *C* represent the occupation number of orbital *i*, the basis function, and the coefficient matrix, respectively. And the factor of *i*th row *j*th column is equal to the expansion coefficient of orbital *j* with respect to basis function  $\chi$ . The electron density differences between the starting and the final states are the linear combination of various electron transition models.<sup>10</sup> All calculated results were gained using the *cubman* utility supplied by the Gaussian 09 and *Multiwfn* programs. Moreover, the two functions  $\rho_+(r)$  and  $\rho_-(r)$  were used for defining the increase and decrease in the density owing to the electronic transition. The centroids of spatial regions defined by  $\rho_+(r)$  and  $\rho_-(r)$  are expressed as<sup>9</sup>

$$C_{+} = (x_{+}, y_{+}, z_{+}) = \frac{\int r \rho_{+}(r) dr}{\int \rho_{+}(r) dr}$$
(S10)

And

$$C_{-} = (x_{-}, y_{-}, z_{-}) = \frac{\int r \rho_{-}(r) dr}{\int \rho_{-}(r) dr}$$
(S11)

The charge transfer distance (D), eq (12) was used

$$D = \left| C_{+} - C_{-} \right| \tag{S12}$$

The fraction (F) of electron exchange is evaluated as

$$F = \left| \int \rho_+(r) dr \right| = \left| \int \rho_-(r) dr \right|$$
(S13)

## Section S2. Figures



Fig. S1 Optimized bond lengths ( $L_1$ ,  $L_2$ ... $L_i$  in Fig .1) and dihedral angles ( $\vartheta_1$ ,  $\vartheta_2$ ... $\vartheta_i$  in Fig. 1) of the oligomers in neutral states versus their numbers at HSE06/6-311G (d, p) level. (a) C-C bond lengths, (b) dihedral angles.



g. S2 (a) The HOMO/LUMO energies and (b) the HOMO-LUMO gaps by HSE06/6-311G(d,p) of the five series of reciprocal chain length n in oligomers.













Fig. S3 3D models of two adjacent fragments of T1-T5.

### Section S3. Spectral Properties of Monomers and Dimers

| System | Electronic<br>transitions | Excitation energy (eV, nm) | Main configurations | f      | $\eta_{\lambda}$ |
|--------|---------------------------|----------------------------|---------------------|--------|------------------|
| M1     | $S_0 \rightarrow S_{12}$  | 4.08, 304                  | H→L+2(64%)          | 0.7696 | 0.8300           |
| D1     | $S_0 \rightarrow S_1$     | 1.85, 669                  | H→L (97%)           | 1.1683 | 0.9321           |
| M2     | $S_0 \rightarrow S_1$     | 1.85, 669                  | H→L(96%)            | 0.3159 | 0.5168           |
| D2     | $S_0 \rightarrow S_1$     | 1.67, 740                  | H→L (91%)           | 1.3768 | 0.9580           |
| M3     | $S_0 \rightarrow S_{12}$  | 3.49, 355                  | H-1→L +1(85%)       | 0.4685 | 0.6600           |
| D3     | $S_0 \rightarrow S_1$     | 1.72, 721                  | H→L(89%)            | 2.1101 | 0.9922           |
| M4     | $S_0 \rightarrow S_1$     | 3.37, 368                  | H-1→L+1 (51%)       | 0.5910 | 0.7436           |
| D4     | $S_0 \rightarrow S_1$     | 1.78, 698                  | H→L (87%)           | 1.0457 | 0.9100           |
| M5     | $S_0 \rightarrow S_{17}$  | 3.67, 338                  | H→L (71%)           | 0.7458 | 0.8204           |
| D5     | $S_0 \rightarrow S_1$     | 1.79, 693                  | H→L (72%)           | 1.2791 | 0.9474           |

Table S1 The calculated maximum absorption wavelength ( $\lambda$ ), excitation energy, largest oscillator strength (f), main configuration, and light absorption efficiency ( $\eta_{\lambda}$ ) of the oligomers

From Table S1 we can see that the main electronic transition in the oligomers is assigned to the  $\pi \rightarrow \pi^*$  type and the strongest absorption peak in the visible region are mainly dominated by the HOMO $\rightarrow$ LUMO, HOMO- $1\rightarrow$ LUMO, HOMO- $1\rightarrow$ LUMO+1, and HOMO $\rightarrow$ LUMO+2 transitions. In all cases, the oscillator strength (*f*) increases strongly when the repeat unit increases. With the increasing conjugation lengths, the strongest peaks are red-shifted.

#### References

- 1 Z. Fu, W. Shen, R. He, X. Liu, H. Sun, W. Yin and M. Li, *Phys. Chem. Chem. Phys.*, 2015, **17**, 2043-2053.
- 2 W.-Q. Deng and W. A. Goddard, J. Phys. Chem. B, 2004, **108**, 8614-8621.
- 3 J. Bisquert, *Phys. Chem. Chem. Phys.*, 2008, **10**, 3175-3194.
- 4 M. Y. Kuo, H. Y. Chen and I. Chao, *Chem. Eur. J*, 2007, **13**, 4750-4758.
- 5 Z. Fu, W. Shen, X. Tang, M. He, R. He and M. Li, J. Phys. Chem. A, 2015, **119**, 6884-6896.
- 6 X. Wang and K.-C. Lau, J. Phys. Chem. C, 2012, **116**, 22749-22758.
- 7 X. Liu, M. Li, R. He and W. Shen, *Phys. Chem. Chem. Phys.*, 2014, **16**, 311-323.
- 8 R. Chen, Y. Wang, T. Chen, H. Li, C. Zheng, K. Yuan, Z. Wang, Y. Tao, C. Zheng and W. Huang, *J. Phys. Chem. B*, 2015, **119**, 583-591.
- 9 T. Le Bahers, C. Adamo and I. Ciofini, J. Chem. Theor. Comput., 2011, 7, 2498-2506.
- 10 X. Liu, W. Shen, R. He, Y. Luo and M. Li, J. Phys. Chem. C, 2014, **118**, 17266-17278.