Charge transport, interfacial interactions and synergistic mechanism in BiNbO₄/MWO₄ (M = Zn and Cd) heterostructure for hydrogen production: insights from a DFT+*U* study

Francis Opoku^a, Krishna Kuben Govender^b, Cornelia Gertina Catharina Elizabeth van Sittert^c, Penny Poomani Govender^a,*

Corresponding author: Penny Poomani Govender (pennyg@uj.a.c.za)

^{*a.}Department of Applied Chemistry, University of Johannesburg, P. O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa

^{b.}Council for Scientific and Industrial Research, Meraka Institute, Center for High Performance Computing, 15 Lower Hope Road, Rosebank, Cape Town, South Africa, 7700

^{c.}Research Focus Area for Chemical Resource Beneficiation: Laboratory of Applied Molecular Modelling, North-West University, Potchefstroom, 2520, South Africa

Fig. S1. Calculated unfolded band structure of (a) $MoS_2(001)$, (b) $WS_2(001)$, (c) MoS_2/m -BiVO₄(010) and (d) WS_2/m -BiVO₄(010) within the hybrid HSE06 functional. The Fermi level is set to zero as dashed horizontal black line.

Fig. S2 GGA+*U* calculated PDOS of (a) $ZnWO_4(010)$ surface, (b) CdWO_4(010) surface, (c) BiNbO_4(010) surface, (d) BiNbO_4/ZnWO_4(010) heterostructure and (e) BiNbO_4/CdWO_4(010) heterostructure. The Fermi level is set to zero eV as a black dashed line.