Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic Supplementary Information

Novel Bacteriochlorin–Styrylnaphthalimide Conjugate for Simultaneous Photodynamic Therapy and Fluorescence Imaging

Pavel A. Panchenko, Mikhail A. Grin, Olga A. Fedorova, Marina A. Zakharko,

Dmitriy A. Pritmov, Andrey F. Mironov, Antonina N. Arkhipova, Yuri V. Fedorov,

Gediminas Jonusauskas, Raisa I. Yakubovskaya, Natalia B. Morozova,

Anastasia A. Ignatova and Alexey V. Feofanov

CONTENTS

1.	Synthesis of conjugate BChl-NI	S2
2.	2D NMR spectra of NI3, BChl and BChl-NI	S7
3.	Evaluation of Different Parameters for RET process	S18
4.	Changes in the absorption spectra of mixed solutions	
	containing TPP, BChl , NI3 and DPBF	S19
5.	Steady-state spectra of the conjugate and individual	
	chromophores in rabbit blood serum	S20

1. Synthesis of the compounds

General analytical methods. ¹H and ¹³C NMR spectra were recorded on an Avance 400, Avance 500 and Avance 600 spectrometers (Bruker) operating at 400.13, 500.13, 600.22 MHz (for ¹H) and 100.61, 125.76, 150.93 MHz (for ¹³C) respectively. The chemical shifts were determined with an accuracy of 0.01 ppm relative to residual solvent signals and translated to the internal standard (TMS), coupling constants were measured with an accuracy of 0.1 Hz. The numbering of carbon atoms in the naphthalimide and bacteriochlorin fragments used for the description of the ¹H NMR spectra of the synthesized compounds is shown in Scheme S1. In the case of conjugate **BChl-NI**, carbon atoms of naphthalimide are marked with a prime. The assignment of ¹H and ¹³C signals is based on 2D NMR experiments (HMBC, HSQC, ¹H COSY), which were performed using standard pulse sequences from the Bruker library. 2D NMR spectra are presented in section 2.

Scheme S1. Numbering of the carbon atoms in BChl and NI6

Melting points were measured on Melt-temp melting point electrothermal apparatus and were uncorrected. The reaction course and purity of the final products was followed by TLC on silica gel (DC-Alufolien Kieselgel 60 F254, Sigma-Aldrich). Column chromatography was conducted over silica gel (Kieselgel, particle size 40-60 μ m, Acros Organics). Preparative TLC was performed on silica gel 60 (Merck) using 20×20 cm plates with a layer thickness of 1 mm. IR spectra were recorded on a Bruker EQUINOX 55 spectrometer and on Magna-IR 750 Nicolet spectrometer with potassium bromide pellets. Electron impact (EI) (70 eV) mass spectra were obtained from Finnigan Polaris Q instrument (ion-trap) in standard conditions. The mass-spectra of **BChl** and **BChl-NI** were obtained by MALDI method on time-offlight mass-spectrometer Bruker Ultraflex TOF/TOF using dihydroxybenzene matrix. m/z: 1997.68 (M⁺). Elemental analyses were carried out in the Microanalysis Laboratory of the A.N. Nesmeyanov Institute of Organoelement Compounds.

4-(4-*N*,*N*-dimethylaminostyryl)-*N*-(2-hydroxyethyl)-1,8-naphthalimide (NI3). А solution of compound NI1 (0.90 g, 2.81 mmol), Pd(OAc)₂ (8 mg, 0.04 mmol), tris-(orthotolyl)phosphine (47 mg, 0.155 mmol), triethylamine (5.4 ml) and 4-N,N-dimethylaminostyrene (0.50 g, 3.37 mmol) in dry DMF (30 ml) was stirred at 110 °C during 13 h under argon atmosphere. The mixture was cooled to ambient temperature then diluted with water and exctracted with CHCl₃. The organic layer was dried with Na₂SO₄ and evaporated in vacuum. The residue was subjected to chromatography on a silica gel by using gradient mixture dichloromethane – methanol and then recrystallized from ethanol to give 0.27 g (yield 25%) of a dark red solid. M.p. 217 °C (decomp.). ¹H NMR (400.13 MHz, DMSO- d_6 , 27 °C): $\delta = 2.99$ (s, 6H, N(CH₃)₂), 3.58–3.69 (m, 2H, CH₂OH), 4.16 (t, 2H, CH₂CH₂OH, *J* = 6.3), 4.82 (m, 1H, OH, J = 6.3, 6.77 (d, 2H, H(13), H(15), J = 8.8), 7.54 (d, 1H, H(9), J = 15.9), 7.70 (d, 2H, H(12), H(16), J = 8.8), 7.87 (m, 1H, H(6), J = 7.3, J = 8.8), 7.94 (d, 1H, H(10), J = 15.9), 8.19 (d, 1H, H(10), J = 15.9), 8.19H(3), J = 8.2, 8.44 (d, 1H, H(7), J = 7.3), 8.53 (d, 1H, H(5), J = 8.8), 8.99 (d, 1H, H(2), J = 8.2). ¹³C NMR (100.61 MHz, DMSO- d_6 , 27 °C): $\delta = 40.12$ (N(CH₃)₂), 41.79 (CH₂CH₂OH), 57.83 (CH₂OH), 112.00 (C(13), C(15)), 117.49 (C(9)), 119.54 (C(1)), 122.21 (C(3)), 122.51 (C(8)), 124.42 (C(11)), 126.57 (C(6)), 128.34 (C(8a)), 128.78 (C(4a)), 128.98 (C(12), C(16)), 130.61 (C(2)), 130.70 (C(7)), 130.78 (C(5)), 135.77 (C(10)), 141.97 (C(4)), 150.76 (C(14)), 163.38 (C(8b)), 163.69 (C(8c)). FT-IR (KBr)/cm⁻¹: 3489 (v_{OH}); 2923, 2865 (v_{CH}); 1695, 1646 (v_{C=O}). EI-MS, *m/z* (*I*, %): 387 (27), 386 (100) [M]⁺, 387 (27), 355 (17), 343 (58), 341 (29), 327 (15), 255 (19), 228 (16), 162 (16). Elemental analysis: calculated (%) for C₂₄H₂₂N₂O₃ (MW 386.44): C 74.59, H 5.74, N 7.25, O 12.42; found C 74.30, H 5.82, N 7.06.

4-(4-*N*,*N***-dimethylaminostyryl**)-*N*-(**2-chloroethyl**)-**1,8-naphthalimide** (**NI5**). A mixture of **NI3** (0.06 g, 0.155 mmol) and POCl₃ (1.1ml, 0.012 mol) was stirred at 85°C for 2 h. The excess of POCl₃ was removed under reduced pressure, the residue was dissolved in CHCl₃ and then, washed sequentially with 5% aqueous solution of Na₂CO₃ and distilled water. The organic layer was dried with MgSO₄ and evaporated in vacuum. The residue was chromatographed on SiO₂ using dichloromethane – methanol gradient mixture to give 56 mg (89% yield) of **NI5**. M.p. 187–189 °C. ¹H NMR (600.17 MHz, DMSO-*d*₆, 30 °C): δ = 3.00 (s, 6H, N(CH₃)₂), 3.83-3.92 (m, 2H, CH₂CH₂Cl), 4.41 (m, 2H, CH₂Cl, *J* = 6.9), 6.78 (d, 2H, H(13), H(15), *J* = 8.8), 7.56 (d, 1H, H(10), *J* = 16.0), 7.71 (d, 2H, H(12), H(16), *J* = 8.8), 7.86-7.93 (m, 1H, H(6)), 7.95 (d, 1H, H(9), *J* = 16.0), 8.21 (d, 1H, H(3), *J* = 8.1), 8.46 (d, 1H, H(2), *J* = 8.1), 8.55 (d, 1H, H(7), *J* = 7.1), 9.02 (d, 1H, H(5), *J* = 8.2). ¹³C NMR (150.93 MHz, DMSO-*d*₆, 30 °C): δ = 40.03 (N(CH₃)₂), 40.77 (CH₂Cl), 52.88 (CH₂CH₂Cl), 112.13 (C(13), C(15)), 117.51 (C(9)), 119.13 (C(1)), 122.09 (C(3)), 122.30 (C(8), C(11)), 124.42 (C(11)), 126. 70 (C(6)),

128.38 (C(8a)), 128.81 (C(4a)), 129.01 (C(12), C(16)), 130.86 (C(2)), 130.97 (C(7)), 131.12 (C(5)), 135.97 (C(10)), 142.32 (C(4)), 149.39 (C(14)), 163.19 (C(8b)), 163.53 (C(8c)). EI-MS, m/z (*I*, %): 406 (35), 404 (100) [M]⁺, 386 (22), 369 (16), 342 (41), 341 (25), 298 (12), 255 (15), 162 (18), 113 (32). Elemental analysis: calculated (%) for C₂₄H₂₁ClN₂O₂ (MW 404.89): C 71.19, H 5.23, Cl 8.76, N 6.92, O 7.90; found C 70.92, H 5.28, N 6.85.

4-(4-*N*,*N*-dimethylaminostyryl)-*N*-(2-azidoethyl)-1,8-naphthalimide (NI6). To а solution of compound NI5 (50 mg, 0.12 mmol) in DMF (3.5 ml) NaN₃ (48 mg, 0.74 mmol) was added. The reaction mixture was stirred at 100 °C for 7 h under argon atmosphere and then, chloroform (20 ml) was added. The resulting solution was washed with water and dried with MgSO₄. After removing of a solvent, 28 mg (55% yield) of a pure product was obtained. M.p. 148 °C (decomp.). ¹H NMR (400.13 MHz, DMSO- d_6 , 30 °C): $\delta = 3.00$ (s, 6H, N(CH₃)₂), 3.63 (m, 2H, CH₂N₃, J = 6.0), 4.31 (m, 2H, CH₂CH₂N₃, J = 6.0), 6.78 (d, 2H, H(15), H(13), J = 8.8), 7.54 (d, 1H, H(10), J = 15.9), 7.71 (d, 2H, H(12), H(16), J = 8.8), 7.86-7.93 (m, 2H, H(6)), 7.92-7.99 (m, 1H, H(9)), 8.20 (d, 1H, H(3), J = 7.9), 8.46 (d, 1H, H(2), J = 7.9), 8.55 (d, 1H, H(7), J = 7.9) 7.3), 9.00 (d, 1H, H(5), J = 8.7).¹³C NMR (100.61 MHz, DMSO- d_6 , 30°C): $\delta = 38.53$ (<u>CH</u>₂CH₂N₃), 40.05 (N(CH₃)₂), 48.35 (CH₂N₃), 112.02 (C(13), C(15)), 117.44 (C(9)), 119.12 (C(1)), 122.10 (C(3)), 122.31 (C(8)), 124.39 (C(11)), 126.74 (C(6)), 128.39 (C(8a)), 128.83 (C(4a)), 129.04 (C(12), C(16)), 130.90 (C(2)), 131.00 (C(7)), 131.12 (C(5)), 136.03 (C(10)), 142.36 (C(4)), 150.83 (C14)), 163.35 (C(8b)), 163.69 (C(8c)). EI-MS, *m/z* (*I*, %): 411 (9) [M]⁺, 353 (66), 352 (100), 342 (69), 341 (43), 328 (36), 327 (28), 253 (28), 226 (28), 57 (31). Elemental analysis: calculated (%) for C₂₄H₂₁N₅O₂ (MW 411.46): C 70.06, H 5.14, N 17.02, O 7.78; found C 70.17, H 5.22, N 16.98.

Propargyl-15²,17³-dimethoxy-13¹-amide of bacterichlorin *e* (**BChl**). To a solution of 50 mg (0.08 mmol) of methyl ether of bacteriopheophorbide (**BPheid**) in pyridine (4 ml) propargylamine (0.3 ml, 4.5 mmol) was added. The reaction mixture was stirred at room temperature for 28 h and then, diluted with chloroform. The resulting solution was washed sequentially with 0.1N HCl, aqueous NaHCO₃ and water. Organic layer was dried with Na₂SO₄ and evaporated in vacuum. The residue was purified by column chromatography on SiO₂ using chloroform–methanol mixture (v/v=100/2) to give 41mg (76% yield) of **BChl**. M.p. 162 °C (decomp.). ¹H NMR (500.13 MHz, CD₂Cl₂, 25 °C): *δ* = −1.31 (s, 1H, NH, pyrrole), −1.26 (s, 1H, NH, pyrrole), 1.08 (t, 3H, H(8²), *J* = 7.4), 1.62 (d, 3H, H(18¹), *J* = 7.3), 1.66-1.75 (m, 1H, H(17¹)), 1.87 (d, 3H, H(7¹), *J* = 7.3), 2.05-2.16 (m, 2H, H(17¹), H(8¹)), 2.19-2.25 (m, 1H, H(17²)), 2.36-2.43 (m, 1H, H(8¹)), 2.46 (t, 1H, C≡CH, *J* = 2.6), 2.53-2.60 (m, 1H, CH₂(17²)), 3.17 (s, 3H, COCH₃), 3.34 (s, 3H, H(12¹)), 3.56-3.62 (m, 6H, C(17²)–COOCH₃, H(2¹)), 3.79 (s, 3H, C(15¹)–COOCH₃), 4.17-4.21 (m, 2H, H(8), H(17)), 4.28 (q, 1H, H(18), *J* = 7.3), 4.35 (dq,

1H, H(7), J = 3.2, J = 7.3), 4.45 (ddd, 1H, NHC<u>H</u>₂, J = 17.4, J = 5.5, J = 2.6), 4.53 (ddd, 1H, NHC<u>H</u>₂, J = 17.4, J = 5.5, J = 2.6), 5.12 (d, 1H, H(15¹), J = 19.2), 5.30 (d, 1H, H(15¹), J = 19.2), 6.69 (t, 1H, NHCO, J = 5.5), 8.65 (s, 1H, H(10)), 8.76 (s, 1H, H(20)), 9.30 (s, 1H, H(5)).¹³C NMR (125.76 MHz, CD₂Cl₂, 25 °C): $\delta = 11.06$ (C(8²)), 12.00 (C(12¹)), 13.99 (C(2¹)), 23.44 (C(18¹), 23.95 (C(7¹)), 29.87 (C(17¹)), 30.57 (C(8¹)), 30.68 (<u>C</u>H₂NHCO), 31.48 (C=<u>C</u>H), 33.56 (CO<u>C</u>H₃), 38.15 (C(15¹)), 47.35 (C(7)), 48.60 (C(18)), 51.99 (C(17²)–COO<u>C</u>H₃), 52.79 (C(15¹)–COO<u>C</u>H₃), 53.64 (C(17)), 57.78 (C(8)), 79.68 (<u>C</u>=CH), 97.17 (C(10)), 98.01 (C(20)), 98.66 (C(5)), 105.09 (C(14)), 129.05 (C(11)), 129.46 (C(3)), 132.30 (C(12)), 132.64 (C(2)), 133.00 (C(1)), 133.56 (C(15)), 134.13 (C(13)), 135.38 (C(4)), 164.25 (C(19)), 165.78 (C(9)), 166.31 (C(16)), 169.10 (C(6)), 169.18 (CONH), 173.95 (C(17²)–<u>C</u>OOCH₃), 174.16 (C(15¹)–<u>C</u>OOCH₃), 198.87 (<u>C</u>OCH₃). FT-IR (KBr)/cm⁻¹: 3287 (v_{=C-H}); 2120 (v_{C=C}); 1736 (v_{C=0}); 1657, 1511(v_{NH}-C₌₀). Elemental analysis: calculated (%) for C₃₉H₄₅N₅O₆ (MW 679.80): C 68.90, H 6.67, N 10.30, O 14.12; found C 68.81, H 6.75, N 10.22. Mass (MALDI): 679.2 (M⁺).

Conjugate BChl-NI. A mixture of BChl (20 mg, 0.03 mmol), NI6 (14 mg, 0.033 mmol), diisopropylethylamine (10.5 µl, 0.06 mmol), copper (I) iodide (1 mg, 0.005 mmol) and chloroform (3.0 ml) was stirred at room temperature for 3 h. Then, the reaction mixture was concentrated in vacuum and the product was isolated by the preparative thin layer chromatography on SiO₂ using dichloromethane-methanol mixture (v/v=25/1) as an eluent. Yield of **BChl-NI** is 20 mg (61%). M.p. 135 °C (decomp.). ¹H NMR (600.13 MHz, CD₂Cl₂, 23 °C): $\delta = -1.36$ (s, 1H, NH, pyrrole), -1.34 (s, 1H, NH, pyrrole), 1.06 (t, 3H, H(8²), J = 7.2), 1.61(d, 3H, $H(18^1)$, J = 7.2), 1.64-1.72 (m, 1H, $H(17^1)$), 1.87 (d, 3H, $H(7^1)$, J = 7.3), 2.01-2.16 (m, 2H, H(8¹), H(17¹)), 2.17-2.26 (m, 1H, H(17²)), 2.35-2.42 (m, 1H, H(8¹)), 2.52-2.58 (m, 1H, H(17²)), 3.01 (s, 6H, N(CH₃)₂), 3.16 (s, 6H, 2×COOCH₃), 3.56 (s, 3H, COCH₃), 3.57 (s, 3H, $H(12^{1})$, 3.68 (s, 1H, $H(2^{1})$), 4.11-4.19 (m, 2H, H(8), H(17)), 4.26 (q, 1H, H(7), J = 7.3), 4.29-4.36 (m, 1H, H(18)), 4.53-4.67 (m, 2H, triazole-CH₂CH₂), 4.71-4.80 (m, 2H, triazole-CH₂CH₂), 4.80-4.84 (m, 1H, CH₂NHCO), 4.98-5.02 (m, 1H, CH₂NHCO), 5.06 (d, 1H, H(15¹), J = 19.2), 5.29 (d, 1H, H(15¹), J = 19.2), 6.66 (d, 2H, H(13'), H (15'), J = 8.3), 7.02 (d, 1H, H(10'), J = 10.215.3), 7.15-7.17 (m, 1H, NHCO), 7.31-7.37 (m, 3H, H(9'), H(12'), H(16')), 7.50-7.60 (m, 1H, H(6')), 7.60-7.70 (m, 1H, H(3')), 7.98 (s, 1H, triazole), 8.23-8.34 (m, 1H, H(2')), 8.38-8.44 (m, 2H, H(5'), H(7')), 8.52 (s, 1H, H(10)), 8.72 (s, 1H, H(5)), 9.27 (s, 1H, H (20)). ¹³C NMR (125.76) MHz, CD₂Cl₂, 25 °C): $\delta = 11.08$ (C(8²)), 12.41 (C(12¹)), 14.00 (C(2¹)), 23.49 (C(18¹), 23.89 (C(7¹)), 29.85 (C(17¹)), 30.43 (C(8¹)), 32.11 (C(17²)), 33.54 (CH₃CO), 36.52 (CH₂NHCO), 38.08 (C(15¹)), 40.12 (triazole-CH₂CH₂), 40.58 (N(CH₃)₂), 47.17 (C(7)), 48.38 (C(18)), 48.48 (triazole-CH₂CH₂), 51.95 (C(17²)-COOCH₃), 52.68 (C(15¹)-COOCH₃), 53.55 (C(17)), 57.75 (C(8)), 96.77 (C(10)), 98.03 (C(20)), 98.54 (C(5)), 105.20 (C(14)), 112.46 (C(13'), C(15')),

117.88 (C(9')), 119.72 (C(1')), 122.67 (C(8')), 122.81 (C(3')), 123.86 (triazole(CH)), 124.86 (C(11'), 126.59 (C(6')), 128.84 (C(3)), 128.92 (C(12'), C(16')), 129.01 (C(8a')), 129.55 (C(11)), 129.83 (C(4a')), 130.73 (C(7')), 131.49 (C(5')), 131.58 (C(2')), 132.22 (C(12)), 132.33 (C(2)), 132.59 (C(1)), 133.93 (C(15)), 134.34 (C(13)), 135.18 (C(4)), 136.10 (C(10')), 143.02 (C(4')), 144.82 (NHCH₂C), 151.50 (C(14')), 163.79 (C(8b')), 164.19 (C(19)), 164.54 (C(8a')), 165.92(C(9)), 166.60(C(16)), 168.69(C(6)), 169.21(NHCO), 173.87(C(17²)–COOCH₃), 173.93 (C(15¹)–COOCH₃), 198.73 (CH₃CO). FT-IR (KBr)/cm⁻¹: 1733 (v_{C=0}); 1695 (v_{C=C}); 1654, 1524(v_{NH-C=0}), 1434 (v_{N=N}). Elemental analysis: calculated (%) for C₆₃H₆₆N₁₀O₈ (MW 1091.26): C 69.34, H 6.10, N 12.84, O 11.73, found C 69.25, H 6.18, N 12.76. Mass (MALDI): 1091.32 (M⁺).

-2,5 3.0 1 -3.5 4.0 0 4.5 0 -5.0 -5.5 00 mdd -6.0 000 -6.5 ۰¢ a D -7.0 3 -7.5 þ -8.0 ė diama and -8.5 0 -9.0 9.0 8.0 7.5 7.0 6.0 5.5 ppm 5.0 4.0 3.5 3.0 6.5 4.5 2.5 8.5

2. 2D NMR spectra of NI3, BChl and BChl-NI

Fig.S1. COSY spectrum of compound NI3 in DMSO-d₆.

Fig.S2. Aromatic part of COSY spectrum of compound NI3 in DMSO-d₆.

Fig.S3. HSQC spectrum of compound **NI3** in DMSO- d_6 .

Fig.S4. Aromatic part of HSQC spectrum of compound NI3 in DMSO-d₆.

Fig.S5. HMBC spectrum of compound NI3 in DMSO-d₆.

Fig.S6. Aromatic part of HMBC spectrum of compound NI3 in DMSO-d₆.

Fig.S8. Aliphatic part of COSY spectrum of compound BChl in CD₂Cl₂.

Fig.S10. Aliphatic part of HSQC spectrum of compound BChl in CD₂Cl₂.

Fig.S12. Aliphatic part of HMBC spectrum of compound BChl in CD₂Cl₂.

Fig.S14. COSY spectrum of compound BChl-NI in CD_2Cl_2 .

Fig.S15. Aliphatic part of COSY spectrum of compound BChl-NI in CD₂Cl₂.

Fig.S16. HSQC spectrum of compound BChl-NI in CD₂Cl₂.

Fig.S18. Aliphatic part of HSQC spectrum of compound BChl-NI in CD₂Cl₂.

Fig.S19. HMBC spectrum of compound BChl-NI in CD₂Cl₂.

Fig.S20. Aromatic part of HMBC spectrum of compound BChl-NI in CD₂Cl₂.

Fig.S22. Aliphatic part of HMBC spectrum of compound BChl-NI in CD₂Cl₂.

3. Evaluation of Different Parameters for RET process

Energy transfer efficiency value Φ_{RET1} for the conjugate **BChl-NI** was calculated using the expression shown in Eq. (S1),

$$\Phi_{\text{RET1}} = \frac{k_{\text{RET1}}}{k_{\text{RET1}} + \tau_{\text{D},0}^{-1}}$$
(S1)

where $\tau_{D,0}$ is the 4-styrylnaphthalimide donor chromophore excited state lifetime in the absence of RET acceptor ($\tau_{D,0} = 0.38$ ns, the lifetime of **NI4**), and k_{RET1} – energy transfer rate constant. According to Förster resonance theory, estimation of k_{RET1} was done following Eq. (S2),

$$k_{\text{RET1}} = \frac{1}{\tau_{\text{D},0}} \left(\frac{R_0}{r}\right)^6 \tag{S2}$$

where *r* is the distance between the donor and acceptor chromophores (15.06 Å) which was obtained from the PM6 optimized ground state geometry of **BChl-NI** (Fig.S23), and R_0 is the critical Förster distance. To calculate R_0 we used Eq. (S3),

$$R_0^6 = \frac{9000 \ln 10 \kappa^2 \varphi^{fl}}{128 \pi^2 N_A n^4} \int_0^\infty F_D(\lambda) \varepsilon_A(\lambda) \lambda^4 d\lambda$$
(S3)

where κ^2 denotes a factor which describes the relative orientations of the donor and acceptor ($\kappa^2 = 2/3$ for a random orientation), φ^{fl} is the donor emission quantum yield in the absence of the acceptor (the quantum yield of compound **NI4**, $\varphi^{fl} = 0.032$), *n* is the refractive index of the medium (n = 1.344 for acetonitrile), N_A is Avogadro constant ($N_A = 6.02 \cdot 10^{23} \text{ mol}^{-1}$) and the integral defines the amount of overlap between the normalized emission spectrum of the donor $F_D(\lambda)$ and the acceptor absorption spectrum $\varepsilon_A(\lambda)$.

Fig.S23. Optimized ground state geometry of **BChl-NI** obtained by MOPAC 2012 using PM6 Hamiltonian. The solvent effect was included in geometry optimizations following the «COnductorlike Screening Model» (COSMO) implemented in MOPAC 2012. A dielectric constant of $\varepsilon = 20$ and a refraction index of solvent (*n*) such that $n^2 = 2$ were used.

4. Changes in the absorption spectra of mixed solutions containing BChl, NI3 and DPBF

Fig.S24. Changes in the UV/Vis absorption spectrum of a mixed solution containing the conjugate **BChl** $(3.8 \cdot 10^{-6} \text{ M})$ and DPBF $(4.0 \cdot 10^{-5} \text{ M})$ in acetone upon irradiation at 510 nm.

Fig.S25. Changes in the UV/Vis absorption spectrum of a mixed solution containing the compound **NI3** ($5.2 \cdot 10^{-6}$ M) and DPBF ($4.0 \cdot 10^{-5}$ M) in acetone upon irradiation at 490 nm.

5. Steady-state spectra of the conjugate and individual chromophores in rabbit blood serum

Fig.S26. UV/Vis absorption (a,c) and fluorescence emission (b, d) spectra of compounds **BChl**, **NI6**, **BChl-NI** and equimolar mixture of **BChl** and **NI6** (denoted as **«BChl + NI6»**) in rabbit blood serum. Excitation wavelength is 460 nm for **NI6**, **BChl-NI**, **BChl+NI6** and 515 nm for **BChl**. Concentration of all compounds $-4.7 \cdot 10^{-5}$ M.