Received 00th January 20xx, Accepted 00th January 20xx

The electronic properties of three popular high spin complexes [TM(acac)₃, TM= Cr, Mn, and Fe] revisited: an experimental and theoretical study.

DOI: 10.1039/x0xx00000x

S. Carlotto,^{*a} L. Floreano,^b A. Cossaro,^b M. Dominguez,^{b,c} M. Rancan,^d M. Sambi,^a M. Casarin^{*a,d}

www.rsc.org/

Figure S1. Spin-unrestricted scalar relativistic ZORA TD-DFT $1s^{o}$ excitation spectra of $Cr(acac)_{3}$ evaluated with diverse exchange-correlations functionals: (a) LB94,¹ (b) SAOP,² (c) PBE0³ and (d) M06.⁴ Simulated spectra have not been shifted and have a Gaussian broadening of 0.25 eV.

1 R. van Leeuwen and E. J. Baerends, *Phys. Rev.* A, 1994, **49**, 2421.

2 O. V. Gritsenko, P. R. T. Schipper and E. J. Baerends, *Chem. Phys. Lett.*, 1999, **302**, 199.

- 3 C. Adamo and V. Barone, *J. Chem. Phys.*, 1999, **110**, 6158.
- 4 (a) Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, **125**, 194101; (b) Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, **120**, 215.

Figure S2. Spin **③** and spin **④** COOPs between TM^{III} e_g -like 3d AOs and the e linear combination of the $(acac)_3^{3-}$ based n_{-} (solid lines) and n_{+} (dotted lines) FMOs. Bonding (antibonding) combinations correspond to positive (negative) peaks in the COOP plots. Vertical bars represent the HOMO energies.

Figure S3. Superimposed licorice representation of I (Cr^{III} ion in yellow), II (Mn^{III} ion in burgundy), and III (Fe^{III} ion in olive green) BP86 optimized structures. Hydrogen atoms of the acac fragments are not displayed for the sake of clarity.

Table S1. Nalewajski–Mrozek [ref. 1] TM–O bond multiplicity index (INM), Hirshfeld [ref. 2] (Q_{Hir}^{TM}) and Voronoi [ref. 3] (Q_{Vor}^{TM}) charges of TM and O atomic species, and bonding energies (BEs in kcal/mol) of I, II and III decomposed according to the ZTS scheme [ref. 4] and taking I as a reference.

	I	Ш	111
INW	0.47	0.25 / 0.46ª	0.38
$Q_{Hir}^{TM} Q_{Vor}^{TM}$	0.58 / 0.55	0.37 / 0.26	0.43 / 0.35
$Q_{Hir}^{\ 0} Q_{Vor}^{\ 0}$	-0.21 / -0.22	-0.21 / -0.20 ^b -0.17 / -0.16 ^c	-0.19 / -0.19
BE	0	27	61
$\Delta E_{\rm ster}$	0	-17	-115
$\Delta E_{\rm int}$	0	44	176

^aThe former (latter) value refers to the (Mn–O)^I ((Mn–O)^s) bonds. ^bValues relative to the O atoms involved in the two (Mn–O)^I bonds. ^cValues relative to the O atoms involved in the four (Mn–O)^s.

- (a) R. F. Nalewajski and J. Mrozek, Int. J. Quantum Chem., 1994, 51, 187; (b) R. F. Nalewajski, J. Mrozek, S. J. Formosinho and A. 1 J. C. Varandas, Int. J. Quantum Chem., 1994, 52, 1153; (c) R. F. Nalewajski and J. Mrozek, Int. J. Quantum Chem., 1996, 57, 377; R. F. Nalewajski, J. Mrozek and G. Mazur, Can. J. Chem., 1996, 74, 1121; (d) R. F. Nalewajski, J. Mrozek and A. Michalak, Int. J. Quantum Chem., 1997, 61, 589; (e) R. F. Nalewajski, J. Mrozek and A. Michalak, Pol. J. Chem., 1998, 72, 1779.
- 2 F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44, 129.
- C. Fonseca Guerra, J.-W. Handgraaf, E. J. Baerends and F. M. Bickelhaupt, J. Comput. Chem., 2004, 25, 189. 3
- 4 T. Ziegler and A Rauk, Theor. Chim. Acta 1977, 46, 1.

Table S2. Experimental and theoretical ionization energies (IEs in eV) of the HOMO in I, II and III. Theoretical IEs have been evaluated by carrying out spin-unrestricted non-relativistic Slater transition state (^STS) calculations for the 30e(③), the 94a(③) and the 31e(③) MOs in I, II and III, respectively

I

п

Ш

Exp.	7.46, ^{1,4} 7.5, ² 7.50 ³	7.32 ¹	~6.3ª
^s TS	6.84	6.34	6.95

^aEstimated from the spectrum of Fe(hfa)₃⁵ by applying a 2 eV red shift.⁶

- 1 S. Evans, A. Hamnett, A. F. Orchard and D. R. Lloyd, Faraday Discuss. Chem. Soc., 1972, 54, 227
- 2 V. I. Vovna, I. B. Lvov, Y. V. Ivanov, S. N. Slabzhennikov, A. I. Streltsov and A. Yu. Ustinov, J. Electron. Spectrosc., 1998, 96, 141.
- 3 M. E. Akopyan, V. I. Vovna, V. I. Kleimenov, S. N. Lopatin and A. Yu. Ustinov, Opt. Spectrosc. (USSR), 1990, 69, 53
- 4 J. B. Westmore, M. L. J. Reimer and C. Reichert, Can. J. Chem., 1991, 59, 1797
- 5 D. R. Lloyd, Chem. Commun., 1970, 868
- 6 The $M(hfa)_3$ PE spectra (M = Al, Cr, Fe) are very similar to the $M(acac)_3$ ones, with the $M(hfa)_3$ spectral patterns uniformly blueshifted by ~ 2 eV with respect to the $M(acac)_3$ ones. A rough estimate of the HOMO ^{III}IEs can be then obtained by referring to the Fe(hfa)_3 spectrum and applying a red-shift of 2 eV

Table S3. Selected optimized geometrical parameters for I - III. Bond lengths and bond angles are in Å and deg, respectively. Beside X-ray values (in parentheses) [refs. 1,2], theoretical B3LYP literature values [refs. 1, 3]. (in bold) are also reported for comparison.^a

	M–O	C0	C–C	O-M-O ^b	M-O-C
	1.977 / 1.977	1.273 / 1.272	1.405/ 1.403	91.5/ 89.7	126.4/ 128.0
	(1.953)	(1.260)	(1.385)	(91.1)	(126.7)
	1.928/1.941/2.163	1.273°	1.406 ^c	89.5°	126.6 ^c
п	1934/1.951/2.147	1.276 ^c	1.405 °	89.2 ^c	127.7 °
	(1.932/1.937/2.110)	(1.268) ^c	(1.384) ^c	(89.2) ^c	(127.0) ^c
	2.014/ 2.011	1.272/ 1.275	1.405 / 1.405	87.5/ 87.4	129.3/ 129.8
111	(1.992)	(1.262)	(1.382)	(87.4)	(129.1)

^aLiterature values pertaining to I and III are those reported in ref. 1, while those pertaining to II are taken from refs. 2 (X-ray) and 3 (B3LYP). ^bIt refers to the angle within the pseudoaromatic ring. ^cMean value.

- 1 I. Diaz-Acosta, J. Baker, W. Cordes and P. Pulay, J. Phys. Chem. A, 2001, 105, 238.
- 2 B. R. Stults, R. S. Marianelli and V. W. Day, Inorg. Chem. 1979, 18, 1853.
- 3 I. Diaz-Acosta, J. Baker, J. F. Hinton and P. Pulay, *Spectrochim. Acta A*, 2003, **59**, 363.

Table S4. DFT-BP86 Optimized Cartesian Coordinates of $Cr(acac)_3$ (I)

Cr O	0.000000 1.406389	0.000000	0.000000
0	1.406389	-0.782165	-1.155070
0	-0.025820	1.609051	-1.155070
0	-1.380570	-0.826886	-1.155070
0	-1.380570	0.826886	1.155070
0	-0.025820	-1.609051	1.155070
C	3.021118	2.285131	2.030360
C	1.958547	2 960004	1.010059
C	0 695750	2.663227	-1 010059
C	0.095750	2.003227	-2.020360
C	-3 303487	0 000000	-2.030300
C	-2 654297	0.000000	1 010059
C	-3 489541	1 473799	2 030360
C	-2 654297	-0 729076	-1 010059
C	-3 489541	-1 473799	-2 030360
C	1.958547	-1.934150	-1.010059
C	3.021118	-2.285131	-2.030360
C	0.695750	-2.663227	1.010059
С	1.651744	-2.860904	0.000000
С	0.468423	-3.758931	2.030360
Н	2.196839	3.805037	0.000000
Н	-4.393679	0.000000	0.000000
Н	3.145990	1.456830	2.735622
Н	-0.311344	3.452922	-2.735622
Н	-2.834647	1.996093	2.735622
Н	3.145990	-1.456830	-2.735622
Н	-0.311344	-3.452922	2.735622
Н	-2.834647	-1.996093	-2.735622
Н	2.196839	-3.805037	0.000000
Н	3.979854	2.489098	1.531867
Н	2.739023	3.193785	2.581707
Н	0.165695	4.691203	-1.531867
Н	1.396387	3.968956	-2.581707
Н	-4.145549	2.202105	1.531867
Н	-4.135410	0.775171	2.581707
Н	-4.145549	-2.202105	-1.531867
Н	-4.135410	-0.775171	-2.581707
Н	2.739023	-3.193785	-2.581707
Н	3.979854	-2.489098	-1.531867
Н	1.396387	-3.968956	2.581707
Н	0.165695	-4.691203	1.531867

Table S5. DFT-BP86 Optimized Cartesian Coordinates of Mn(acac)₃ (II)

1.6	0 000000	0 000000	0 000000
Mn	0.000000	0.000000	0.000000
0	-1.591196	0.748706	1.302678
0	-1.383557	-0.781855	-1.114218
0	1.536360	-0.891954	-1.28/511
0	0.126169	-1.5883//	1.118618
0	1.3/2494	0.831906	1.122860
0	-0.061/38	1.5938/6	-1.14441/
С	-3.770555	1.285283	2.081121
С	-2.832043	0.684808	1.050477
С	-3.390434	0.075671	-0.106923
С	-2.667371	-0.601293	-1.089721
С	-3.392444	-1.226067	-2.261080
С	3.244253	-2.365189	-2.027708
С	2.182320	-1.951313	-1.025114
С	1.976053	-2.760592	0.125228
С	0.995637	-2.549203	1.096379
С	0.864239	-3.512875	2.255143
С	3.003492	2.307932	1.972109
С	1.953613	1.966006	0.942814
С	1.679322	2.856707	-0.107004
С	0.697878	2.630743	-1.084457
С	0.459976	3.652849	-2.169824
Н	-3.736797	0.664992	2.989304
Н	-3.415865	2.286105	2.361114
Н	-4.807995	1.340880	1.729871
Н	-4.472210	0.115115	-0.227457
Н	-3.223075	-2.312605	-2.259274
Н	-4.469591	-1.026106	-2.232253
Н	-2.971090	-0.835869	-3.198481
Н	4.029708	-1.595922	-2.058522
Н	3.698295	-3.335319	-1.793184
Н	2.792880	-2.402836	-3.029106
Н	2.614159	-3.634603	0.248965
Н	0.919542	-2.953312	3.199491
Н	-0.125672	-3.991076	2.221479
Н	1.641132	-4.285600	2.239659
Н	3.826307	1.581349	1.902994
Н	3.401078	3.319943	1.837492
Н	2.570395	2.210106	2.977127
н	2.248739	3.782634	-0.156122
н	0.514882	3,156976	-3.148911
н	-0.557464	4.058495	-2.069891
Н	1.183546	4,474538	-2.130741

This journal is © The Royal Society of Chemistry 20xx

Table S6. DFT-BP86 Optimized Cartesian Coordinates of $Fe(acac)_3$ (III)

Fe O O	0.000000 1.398218 1.398218	0.000000 0.909215 -0.909215	0.000000 1.178940 -1.178940
0	0.088294	1.665500	-1.178940
0	-1.486512	-0.756285	-1.178940
0	-1.486512	0.756285	1.178940
0	0.088294	-1.665500	1.178940
С	2.987580	2.422400	2.101023
С	1.966491	2.049776	1.043193
C	1.707287	2.957107	0.000000
C	0.791913	2.727919	-1.043193
C	0.604070	3.798520	-2.101023
C	-3.4145/3	0.000000	0.000000
C	-2.758404	0.0/8143	2 101023
C	-2 758404	-0 678143	_1 0/3193
C	-3 591650	-1 376120	-2 101023
C	1 966491	-2 049776	-1 043193
C	2 987580	-2 422400	-2 101023
C	0.791913	-2.727919	1.043193
C	1.707287	-2.957107	0.000000
С	0.604070	-3.798520	2.101023
Н	2.252526	3.901489	0.000000
Н	-4.505052	0.000000	0.000000
Н	3.101086	1.598413	2.813286
Н	-0.166277	3.484826	-2.813286
Н	-2.934809	1.886413	2.813286
Н	3.101086	-1.598413	-2.813286
Н	-0.166277	-3.484826	2.813286
Н	-2.934809	-1.886413	-2.813286
Н	2.252526	-3.901489	0.000000
Н	3.959615	2.643886	1.636917
Н	2.668208	3.326890	2.639155
Н	0.309865	4.751070	-1.636917
H	1.547067	3.974181	-2.639155
Н	-4.269480	2.107184	1.636917
H	-4.215276	0.647291	2.639155
H 	-4.269480	-2.107184	-1.636917
H 	-4.215276	-0.647291	-2.639155
H	2.668208	-3.326890	-2.639155
н	3.939613	-2.643886	-1.03091/
H	1.54/06/	-3.9/4181	2.639155
н	0.309865	-4./SIU/U	T.030AT/

Sym	EE	isos	fsos	<i>f</i> (x10 ³)	Peak	
е	519.4	$3e^{\downarrow}+3e^{\uparrow}+2a_2^{\uparrow}+3e^{\uparrow}$	$18a_1^{(22)}+19a_1^{(19)}+31e^{(17)}+31e^{(17)}$	35.9	А	-
a ₂	519.4	$3e^{\uparrow}+2a_2^{\downarrow}+2a_2^{\uparrow}+3e^{\downarrow}$	$31e^{(35)}+18a_1^{(23)}+19a_1^{(19)}+30e^{(18)}$	37.9	А	
a ₂	520.3	2a₂ [↓] +3e [↓]	18a1 ⁽⁴⁸⁾ +30e ⁽⁴³⁾	6.4	S	
е	520.4	$2a_2^{\uparrow}+2e^{\uparrow}$	32e ⁽⁴⁶⁾ +32e ⁽³⁸⁾	5.3	S	
a ₂	520.4	2e [↑] +3e [↑]	32e ⁽⁷²⁾ +32e ⁽²¹⁾	14.2	S	
е	521.3	2e↓+2a₂↓	32e ⁽³⁴⁾ +32e ⁽³²⁾	5.3	В	
a ₂	522.0	$2a_2^{\downarrow}+2a_2^{\downarrow}+2a_2^{\downarrow}$	$22a_1^{(50)}+20a_1^{(15)}+21a_1^{(15)}$	5.4	В	
a ₂	522.1	2e [↓] +3e [↓] +2e [↓]	37e ⁽³¹⁾ +37e ⁽²⁵⁾ +38e ⁽¹¹⁾	7.6	В	

Table S7. *EEs* (eV) and oscillator strengths *f* for the 1s O excitation spectrum of I from spin-unrestricted SR ZORA TDDFT calculations.^{a,b}

^a Only excitations up to *EE* 523 eV and contributions > 10% are reported. *EE*s herein reported have been shifted in Fig. 9 by 12.2 eV. ^bOnly transitions having $f \times 10^3$ > 5 are reported.

Journal Name

Table S8.	EEs (eV) and	oscillator s	strengths <i>J</i>	for the 1s	O excitation	n spectrum	of II from	spin-unrestri	cted SR ZORA
TDDFT cal	lculations. ^{a,b}								

Sym	EE	isos	Fsos	<i>f</i> (x10³)	Peak
а	518.4	9a [↑]	95a ⁽⁹⁸⁾	4.6	Α
а	518.5	8a [↑]	95a ⁽⁹⁸⁾	4.6	А
а	518.5	11a [↑]	95a ⁽⁷⁸⁾	4.5	А
а	518.8	7a [↑]	95a ⁽⁹⁸⁾	4.7	А
а	518.8	6a [↑]	95a ⁽⁹⁸⁾	4.5	А
а	518.9	10a [↑] +10a [↓] +10a [↓]	97a ⁽⁶⁰⁾ +92a ⁽¹²⁾ +91a ⁽¹⁰⁾	18.6	А
а	519.0	$11a^{\uparrow}+11a^{\uparrow}$	98a ⁽⁵⁷⁾ +95a ⁽¹²⁾	14.7	А
а	519.4	7a [↑] +7a [↓]	96a ⁽⁵⁶⁾ +91a ⁽³⁵⁾	16.0	S
а	519.4	6a [↑] +6a [↓]	96a ⁽⁵⁶⁾ +91a ⁽³⁵⁾	16.6	S
а	519.6	9a [↑] +9a [↓] +9a [↓]	98a ⁽⁴⁷⁾ +91a ⁽²⁴⁾ +92a ⁽¹³⁾	10.7	S
а	519.6	8a [↑] +8a [↓] +8a [↓]	97a ⁽⁴⁶⁾ +91a ⁽²³⁾ +92a ⁽¹⁸⁾	10.5	S
а	519.9	9a [⊥] +9a [⊥]	91a ⁽⁴³⁾ +93a ⁽³⁹⁾	3.8	S
а	519.9	8a [⊥] +8a [⊥]	91a ⁽⁴⁸⁾ +93a ⁽²⁸⁾	3.4	S
а	520.1	8a [↓] +8a [↓] +8a [↓] +8a [↓]	92a ⁽⁵⁰⁾ +93a ⁽¹⁹⁾ +95a ⁽¹³⁾ +94a ⁽¹²⁾	3.5	S
а	520.6	8a [⊥] +8a [⊥]	94a ⁽⁷⁰⁾ +93a ⁽¹¹⁾	3.2	В
а	521.2	9a↓+9a↓+9a↓	101a ⁽⁴⁷⁾ +103a ⁽²⁹⁾ +104a ⁽¹²⁾	3.5	В

^a Only excitations up to *EE* 523 eV and contributions > 10% are reported. *EE*s herein reported have been shifted in Fig. 10 by 12.6 eV. ^bOnly transitions having $f \times 10^3$ > 3 and contributions to the TCRFS/SRFS g 1% are reported.

_

Table S9. *EEs* (eV) and oscillator strengths f for the 1s O excitation spectrum of **III** from spin-unrestricted SR ZORA TDDFT calculations.^{a,b}

Sym	EE	isos	fsos	<i>f</i> (x10 ³)	Peak	
е	518.45	3e [↓] +2e [↓]	18a ₁ ⁽⁴⁴⁾ +18a ₁ ⁽³⁷⁾	3.8	S	
a ₂	518.56	3e [↓] +2e [↓] +2a ₂ [↓]	$30e^{(48)} + 30e^{(24)} + 18a_1^{(13)}$	6.4	S	
e	519.14	$2e^{\uparrow}+2a_2^{\uparrow}+3e^{\uparrow}$	32e ⁽¹⁸⁾ +32e ⁽¹⁷⁾ +19a ₁ ⁽¹⁷⁾	5.5	А	
a ₂	519.14	$2e^{\uparrow}+2a_{2}^{\uparrow}+3e^{\uparrow}$	32e ⁽²³⁾ +19a ₁ ⁽²²⁾ +32e ⁽¹⁷⁾	5.6	А	
е	519.58	$3e^{\downarrow}+2a_2^{\downarrow}+2a_2^{\uparrow}$	$19a_1^{(19)}+32e^{(18)}+32e^{(13)}$	33.4	А	
a ₂	519.58	3e [↓] +2a ₂ [↓]	32e ⁽³³⁾ +19a ₁ ⁽²⁰⁾	34.9	А	
e	519.74	2a₂ [↓] +3e [↓]	31e ⁽⁴³⁾ +31e ⁽³⁶⁾	4.9	А	
a ₂	519.74	3e [↓] +2e [↓]	31e ⁽⁵⁰⁾ +31e ⁽³⁷⁾	11.0	A	

^a Only excitations up to *EE* 523 eV and contributions > 10% are reported. *EE*s herein reported have been shifted in Fig. 11 by 12.2 eV. ^bOnly transitions having $f \times 10^3 > 3$ are reported. All excitations associated to states hidden under the B peak have $f \times 10^3 < 2$.