Supporting Information

Charging assisted structural phase transitions in monolayer InSe

Liangzhi Kou^{†, *}, Aijun Du[†], Yandong Ma[‡], Ting Liao[†] and Changfeng Chen^I

[†]School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology,

Garden Point Campus, QLD 4001, Brisbane, Australia

[‡]Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103 Leipzig, Germany

¹Department of Physics and Astronomy and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States

Liangzhi.kou@qut.edu.au

Figure S1. Calculated phonon frequency of β -InSe monolayer using a 5×5 supercell. No imaginary frequency is observed, confirming the dynamical stability of the experimentally synthesized structure.

Figure S2. Calculated energy barrier (0.09 eV/atom) for the γ - β phase transition with $\frac{1}{4}$ sodium adsorption. The inset depicts the relaxed structure of γ -InSe with $\frac{1}{4}$ sodium adsorption.

Figure S3. Calculated (with SOC included) electronic band structure of γ -InSe monolayer with two electron injection into the unit cell.

Figure S4. Calculated electronic band structures of Na decorated γ -InSe monolayer without and with SOC.

Figure S5. Calculated electronic band structure of γ -InSe monolayer on the Ag (111) surface; the states from InSe are represented by the red dotted lines.

Figure S6. Calculated electronic band structure of the distorted γ -InSe monolayer.

Figure S7. Calculated electronic band structure of the bulk β -InSe.

Figure S8. Electronic band structures of the bilayer (left), trilayer (middle) and bulk (right) γ-InSe.