Supporting information for

Symmetry and dynamics of FHF⁻ anion in vacuum, in CD₂Cl₂ and in CCl₄. *Ab initio* MD

study of fluctuating solvent-solute hydrogen and halogen bonds

S.A. Pylaeva,^a H. Elgabarty,^a D. Sebastiani,^a P.M. Tolstoy^{b,*}

^a – Institute of Chemistry, Martin-Luther Universität Halle-Wittenberg, Germany

^b - Center for Magnetic Resonance, St. Petersburg State University, Russia

* - correspondence author, <u>peter.tolstoy@spbu.ru</u>, <u>daniel.sebastiani@chemie.uni-halle.de</u>

Content	Caption	Page
Figure S1	The distributions of $q_2 = r_{\text{FH}} + r_{\text{FH}}$, FF and FH distances for FHF ⁻ in vacuum (top), in CH ₂ Cl ₂ (middle) and in CCl ₄ (bottom).	2
Table S1	The literature data on ¹ H (relative to TMS) and ¹⁹ F (see the reference standard in the Table) NMR shieldings and chemical shifts of FHF-anions in various environments.	3
Table S2	Band positions in the power spectrum of FHF ⁻ (FDF ⁻ , as protons were simulated as deutrons) according to the normal mode analysis of the calculated trajectory performed in TRAVIS software.	4

Figure S1. The distributions of $q_2 = r_{\text{FH}} + r_{\text{FH}}$, F...F and F...H distances for FHF⁻ in vacuum (top), in CH₂Cl₂ (middle) and in CCl₄ (bottom).

 Table S1. The literature data on ¹H (relative to TMS) and ¹⁹F (see the reference standard in the Table) NMR shieldings and chemical shifts of FHF⁻anions in various environments.

System	ð ¹H, ppm	¹⁹ F, ppm	Spectral ref.	Rescale to CFCl ₃ *	Ref.
FHF ⁻ in (CD ₃) ₂ SO (296 K)	15.4	-145.3	Scale $(NaF)_{aq} = -122.4 \text{ ppm}$	-145.3	[a]
FHF ⁻ bound in tricyclic encapsulating	17.5	-152.1	Scale $(NaF)_{aq} = -122.4 \text{ ppm}$	-152.1	[a]
ligand (also $(CD_3)_2SO$) (296 K)					
$FHF^{-}Bu_4N^{+}$ in $CDF_3/CDF_2Cl(130 \text{ K})$	16.60	-155.0	CFCl ₃ scale	-155.0	[b]
FHF ⁻ Bu ₄ N ⁺ in CD ₃ CN (253–343 K)	16.3	67÷71	Shielding vs. CF ₃ COOH	-143.5÷-147.5	[c]
FHF ⁻ in KHF ₂ crystal	16.6	+23.5 ± 9	C ₆ F ₆ scale	-141.4 ± 9	[d]

* in some cases there is not enough data to be sure that the conversion is precise, so that the converted values should be taken with caution (ca. extra ± 2 ppm).

- [a] S.O. Kang, D. Powell, V.W. Day and K. Bowman-James, Trapped Bifluoride, *Angew. Chem. Int. Ed.*, 2006, 45, 1921–1925.
- [b] I.G. Shenderovich, H.-H. Limbach, S.N. Smirnov, P.M. Tolstoy, G.S. Denisov and N.S. Golubev, H/D isotope effects on the low-temperature NMR parameters and hydrogen bond geometries of (FH)₂F⁻ and (FH)₃F⁻ dissolved in CDF₃/CDF₂Cl, *Phys. Chem. Chem. Phys.*, 2002, 4, 5488-5497.
- [c] J.S. Martin and F.Y. Fujiwara, High Resolution Nuclear Magnetic Resonance Spectra of Bifluoride Ion and its Homologues, *Can. J. Chem.* 1971, 49, 3071–3073.
- [d] P. Van Hecke, H.W. Spiess, U. Haeberlen and S. Haussuehl, NMR Study of a Single Crystal of KHF₂. I. ¹H and ¹⁹F Dipolar Spectra, J. Magn. Reson., 1976, 22, 93–102.

Table S2. Band positions in the power spectrum of FHF⁻ (FDF⁻, as protons were simulated as deutrons) according to the normal mode analysis of the calculated trajectory performed in TRAVIS software. The power spectra are shown in Figure 7 in the main text.

System	Symmetric stretch ¹ , cm ⁻¹	Bending	Asymmetric stretch
FDF- in vacuum	572	911	1118
FDF ⁻ in CH ₂ Cl ₂	579	871	1159
FDF ⁻ in CCl ₄	559	860	1135