Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Figure S1. The stable structures of acetaldehyde on different  $Mg^{2+}-O^{2-}$  pairs. The unit of selected distances is Å. Green, red, gray, and white balls represent magnesium, oxygen, carbon and hydrogen atoms, respectively.



Figure S2. Relationship between adsorption energy of acetal dehyde molecule and coordination number of  $\rm Mg^{2+}.$ 



Figure S3. PDOS plots for acetaldehyde molecule adsorbed horizontally on Mg<sub>5C</sub>-O<sub>5C</sub>-T, Mg<sub>4C</sub>-O<sub>4C</sub>-S1 and Mg<sub>3C</sub>-O<sub>3C</sub>-K. (a) PDOS for oxygen and surface Mg<sup>2+</sup>; (b) PDOS for methyl hydrogen and surface O<sup>2-</sup>. The PDOS plots were aligned at the Fermi level.



In Figure 3(a), the significant overlaps between the carbonyl oxygen p orbitals and magnesium s and p orbitals at the position of -0.25 to -0.5 Ha indicate that a Mgs-Oa bond is clearly formed. As the coordination number of Mg<sup>2+</sup> decreases, the overlapping area between the two atoms become larger, indicating interaction between the surface Mg<sup>2+</sup> and carbonyl oxygen is stronger, which is consistent with the fact that acetaldehyde is more stable on Mg<sub>3C</sub>-O<sub>3C</sub>-K than that on Mg<sub>5C</sub>-O<sub>5C</sub>-T and Mg<sub>4C</sub>-O<sub>4C</sub>-S1. Figure 3(b) shows the interaction between methyl hydrogen and surface O<sup>2-</sup>. In all configurations, hydrogen s orbital partly overlaps with oxygen s orbitals at -0.55 Ha and with oxygen p orbitals at -0.2 Ha, indicating that the methyl hydrogen interacts with surface O<sup>2-</sup> but does not form bond. а



Figure S4. The Calculated structures of the intermediates and the transition states in step I.

Figure S5. The Calculated structures of the intermediates and the transition states in step II and step III over different  $Mg^{2+}-O^{2-}$  pairs.



Figure S6. Optimized structure of a  $H_2O$  molecule adsorbed on  $Mg_{3C}$ - $O_{3C}$ -K.



Mg<sub>3C</sub>-O<sub>3C</sub>-K-OH



Figure S7. PDOS plots for  $Mg^{2+}$  in low coordinated  $Mg^{2+}-O^{2-}$  pairs and Mg-OH group. (a) fivecoordinated  $Mg^{2+}$ ; (b) four-coordinated  $Mg^{2+}$ ; (c) three-coordinated  $Mg^{2+}$ .

Figure S8.  $E^*$  values calculated for the Mg<sup>2+</sup> in in low coordinated Mg<sup>2+</sup>-O<sup>2-</sup> pairs and Mg-OH group.



The values of  $E^*$  of Mg<sup>2+</sup> with same coordination numbers are close indicating a similar Lewis acidity and the lower the Mg<sup>2+</sup> coordination, the stronger, generally, the Lewis acidity. In spite of that, there are still some small differences in  $E^*$  of the same coordinated Mg<sup>2+</sup>, such as the case for four coordinated Mg<sup>2+</sup>.

Figure S9. The enolization step on  $Mg_{3C}$ - $O_{5C}$ -K.



(a) The Calculated structures of the intermediates and the transition states in enolization step on  $Mg_{3C}-O_{5C}-K$ . The black lines are drawn around  $Mg_{3C}-O_{5C}-K$  site to guide the eye. IS, TS and FS represent the initial structure, transition state and finial structure, respectively.



(b) The calculated energy profiles in step I with or without water on  $Mg_{3C}$ - $O_{5C}$ -K.

The energy barrier of step I on  $Mg_{3C}$ - $O_{5C}$ -K is 1.09 eV, which is much lower than that on  $Mg_{5C}$ - $O_{5C}$ -T, 1.46 eV. This result indicates that the basic site with weak basic property will catalyze the enolization step with the help of low coordinated  $Mg^{2+}$ .

| Bond                               | Free     | Mg <sub>5C</sub> - | -O <sub>5C</sub> -T | Ν     | 4g <sub>4C</sub> -O <sub>4C</sub> -S | 51    | Ν     | 1g <sub>4C</sub> -O <sub>4C</sub> -S | 82    | М     | g <sub>4C</sub> -O <sub>4C</sub> -1 | 10    | Ν     | /lg <sub>4C</sub> -O <sub>3C</sub> -] | D     | Ν     | Ag <sub>3C</sub> -O <sub>4C</sub> - | D     | Ν     | /lg <sub>3C</sub> -O <sub>3C</sub> -] | K     |
|------------------------------------|----------|--------------------|---------------------|-------|--------------------------------------|-------|-------|--------------------------------------|-------|-------|-------------------------------------|-------|-------|---------------------------------------|-------|-------|-------------------------------------|-------|-------|---------------------------------------|-------|
| parameters <sup>a</sup>            | molecule | Mode               | Mode                | Mode  | Mode                                 | Mode  | Mode  | Mode                                 | Mode  | Mode  | Mode                                | Mode  | Mode  | Mode                                  | Mode  | Mode  | Mode                                | Mode  | Mode  | Mode                                  | Mode  |
|                                    |          | А                  | В                   | А     | В                                    | С     | А     | В                                    | С     | А     | В                                   | С     | А     | В                                     | С     | А     | В                                   | С     | А     | В                                     | С     |
| $d(C_a-O_a)$                       | 1.216    | 1.224              | 1.227               | 1.230 | 1.314                                | 1.350 | 1.230 | 1.259                                | 1.336 | 1.233 | 1.240                               | 1.399 | 1.233 | 1.238                                 | 1.368 | 1.249 | 1.244                               | 1.356 | 1.243 | 1.244                                 | 1.378 |
| $d(C_a-C_b)$                       | 1.499    | 1.491              | 1.491               | 1.482 | 1.487                                | 1.533 | 1.487 | 1.487                                | 1.533 | 1.478 | 1.485                               | 1.528 | 1.481 | 1.450                                 | 1.528 | 1.482 | 1.480                               | 1.523 | 1.474 | 1.488                                 | 1.521 |
| d(C <sub>a</sub> -H <sub>a</sub> ) | 1.118    | 1.113              | 1.055               | 1.110 | 1.108                                | 1.120 | 1.109 | 1.114                                | 1.120 | 1.111 | 1.111                               | 1.110 | 1.115 | 1.121                                 | 1.117 | 1.105 | 1.106                               | 1.111 | 1.108 | 1.118                                 | 1.112 |
| d(C <sub>b</sub> -H <sub>b</sub> ) | 1.094    | 1.099              | 1.094               | 1.105 | 1.094                                | 1.097 | 1.107 | 1.095                                | 1.100 | 1.108 | 1.095                               | 1.098 | 1.120 | 1.095                                 | 1.099 | 1.101 | 1.094                               | 1.097 | 1.127 | 1.094                                 | 1.097 |
| d(C <sub>b</sub> -H <sub>c</sub> ) | 1.100    | 1.100              | 1.100               | 1.102 | 1.099                                | 1.105 | 1.095 | 1.101                                | 1.103 | 1.101 | 1.101                               | 1.097 | 1.104 | 1.100                                 | 1.110 | 1.102 | 1.100                               | 1.104 | 1.104 | 1.100                                 | 1.098 |
| d(C <sub>b</sub> -H <sub>d</sub> ) | 1.100    | 1.002              | 1.101               | 1.102 | 1.101                                | 1.099 | 1.101 | 1.101                                | 1.097 | 1.108 | 1.099                               | 1.103 | 1.102 | 1.100                                 | 1.099 | 1.102 | 1.101                               | 1.097 | 1.097 | 1.100                                 | 1.097 |

Table S1. Bond parameters of acetaldehyde molecule before and after adsorption on  $Mg^{2+}-O^{2-}$  pairs with different coordination numbers. The unit of distances is Å.

<sup>a</sup> The name of atoms in acetaldehyde molecule refers to Scheme 1.

|    |                     | Mulliken charge (  <i>e</i>  ) |                                   |                                   |                                   |                      |                                   |                                   |                      |        |
|----|---------------------|--------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------|-----------------------------------|-----------------------------------|----------------------|--------|
| At | Atoms <sup>a</sup>  | E                              | Mg <sub>5C</sub> -O <sub>5C</sub> | Mg <sub>4C</sub> -O <sub>4C</sub> | Mg <sub>4C</sub> -O <sub>4C</sub> | $Mg_{4C}$ - $O_{4C}$ | Mg <sub>4C</sub> -O <sub>3C</sub> | Mg <sub>3C</sub> -O <sub>4C</sub> | $Mg_{3C}$ - $O_{3C}$ | -      |
|    |                     | Fiee molecule                  | <b>-</b> T                        | -S1                               | -S2                               | -110                 | -D                                | -D                                | -K                   |        |
|    | Oa                  | -0.355                         | -0.364                            | -0.397                            | -0.384                            | -0.407               | -0.404                            | -0.452                            | -0.453               | -      |
|    | H <sub>a</sub>      | 0.005                          | 0.059                             | 0.069                             | 0.074                             | 0.071                | 0.054                             | 0.093                             | 0.082                | -      |
|    | H <sub>b</sub>      | 0.075                          | 0.175                             | 0.193                             | 0.172                             | 0.213                | 0.230                             | 0.180                             | 0.219                | -      |
|    | H <sub>c</sub>      | 0.068                          | 0.122                             | 0.119                             | 0.112                             | 0.118                | 0.109                             | 0.139                             | 0.138                | -      |
|    | H <sub>d</sub>      | 0.067                          | 0.124                             | 0.121                             | 0.139                             | 0.115                | 0.100                             | 0.131                             | 0.114                | -      |
|    | Ca                  | 0.298                          | 0.262                             | 0.284                             | 0.282                             | 0.284                | 0.273                             | 0.277                             | 0.292                | -      |
|    | C <sub>b</sub>      | -0.158                         | -0.349                            | -0.353                            | -0.358                            | -0.352               | -0.355                            | -0.343                            | -0.367               | -      |
|    | CH <sub>3</sub> CHO | 0.000                          | 0.029                             | 0.036                             | 0.037                             | 0.042                | 0.007                             | 0.025                             | 0.025                |        |
| a  | The                 | name of                        | atoms                             | in                                | acetaldeh                         | yde r                | nolecule                          | refers                            | to                   | Scheme |

Table S2. Mulliken charge of the acetaldehyde before and after adsorption on different  $Mg^{2+}-O^{2-}$  pairs.

1.

| Table S3. Adsorption energies | of the intermediates in ster | o II and step III on different | coordinated Mg <sup>2+</sup> -O <sup>2-</sup> pairs |
|-------------------------------|------------------------------|--------------------------------|-----------------------------------------------------|
| 1 0                           | ,                            |                                | 0 1                                                 |

| Model                     | Mg <sub>5C</sub> -O <sub>5C</sub> -T | Mg <sub>4C</sub> -O <sub>4C</sub> -S1 | $Mg_{4C}$ - $O_{4C}$ - $S2$ | Mg <sub>4C</sub> -O <sub>4C</sub> -110 | Mg <sub>4C</sub> -O <sub>3C</sub> -D | Mg <sub>3C</sub> -O <sub>4C</sub> -D | Mg <sub>3C</sub> -O <sub>3C</sub> -K |
|---------------------------|--------------------------------------|---------------------------------------|-----------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| Acetaldehyde <sup>a</sup> | -0.761                               | -0.571                                | -1.114                      | -1.136                                 | -0.875                               | -0.647                               | -0.751                               |
| 3-hydroxybutanal          | -0.740                               | -2.344                                | -1.270                      | -3.595                                 | -0.965                               | -1.470                               | -1.436                               |

<sup>a</sup>the adsorption energy of the second acetaldehyde adsorbed on Mg<sup>2+</sup>-O<sup>2-</sup> pairs

For the adsorption energy of the desired product, the adsorption energies of 3-hydroxybutanal on the Mg<sub>4C</sub>-O<sub>4C</sub> are very high with the value of -2.34, -1.20 and -3.60 eV on Mg<sub>4C</sub>-O<sub>4C</sub>-S1, Mg<sub>4C</sub>-O<sub>4C</sub>-S2 and Mg<sub>4C</sub>-O<sub>4C</sub>-110 respectively, indicating the desorption processes on the three surfaces are difficult to occur, especially on Mg<sub>4C</sub>-O<sub>4C</sub>-S1 and Mg<sub>4C</sub>-O<sub>4C</sub>-110. Therefore, structures with the row of Mg<sup>2+</sup> and O<sup>2-</sup> may be unfavorable to the addol condensation reaction for it is difficult for 3-hydroxybutanal to transfer to the acid sites to form the crotonaldehyde.

| Bond                               | (     | Configuration | S     |
|------------------------------------|-------|---------------|-------|
| parameters <sup>a</sup>            | а     | b             | c     |
| $d(C_a-O_a)$                       | 1.232 | 1.244         | 1.224 |
| $d(C_a-H_a)$                       | 1.108 | 1.116         | 1.114 |
| $d(C_a-C_b)$                       | 1.486 | 1.497         | 1.495 |
| d(C <sub>b</sub> -H <sub>b</sub> ) | 1.102 | 1.095         | 1.095 |
| d(C <sub>b</sub> -H <sub>c</sub> ) | 1.102 | 1.100         | 1.100 |
| d(C <sub>b</sub> -H <sub>d</sub> ) | 1.102 | 1.101         | 1.101 |

Table S4. Bond parameters of acetaldehyde molecule after adsorption at different adsorption sites over  $Mg_{3C}-O_{3C}$ -K-OH surface. (a)  $Mg_{S}-O_{W}H_{W}$ , (b)  $O_{W}H_{W}$ , (c)  $O_{S}H_{W}$ . The unit of distances is Å.

<sup>a</sup> The name of atoms in acetaldehyde molecule refers to Scheme 1.

| MgO surfaces                           | $E^*$ |
|----------------------------------------|-------|
| Mg <sub>5C</sub> -O <sub>5C</sub> -T   | 0.215 |
| Mg <sub>4C</sub> -O <sub>4C</sub> -S1  | 0.178 |
| Mg <sub>4C</sub> -O <sub>4C</sub> -S2  | 0.141 |
| Mg <sub>4C</sub> -O <sub>4C</sub> -110 | 0.136 |
| Mg <sub>4C</sub> -O <sub>3C</sub> -D   | 0.145 |
| Mg <sub>3C</sub> -O <sub>4C</sub> -D   | 0.091 |
| Mg <sub>3C</sub> -O <sub>3C</sub> -K   | 0.098 |
| Mg <sub>4C</sub> -O <sub>2C</sub> H    | 0.152 |
|                                        |       |

Table S5. The calculated  $E^*$  values for all the Mg<sup>2+</sup> states in low coordinated Mg<sup>2+</sup>-O<sup>2-</sup> pairs and Mg-OH group.