An Assessment of Random-phase Approximation Functional and Characteristics Analysis for Noncovalent Cation $-\pi$ Interactions

He Su,¹ Qiyang Wu,¹ Hongyan Wang,¹ Hui Wang^{1,*}

¹School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China

* Corresponding author.
Hui Wang
Address: School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, P. R. China
E-mail Address: wanghui@swjtu.edu.cn

SUPPORTING INFORMATION

Table 1. Geometry optimization and topological properties of electron density (in au) of the complexes calculated at B3LYP/6-311++G** and MP2/6-311++G** levels. The point symmetry of the complex is in parentheses.

Table 2. Total energies considering zero-point vibrational energies correction (E, in Hartree/mol) and binding energies (ΔE , in kcal/mol) with the BSSE correction of the cation–benzene complexes at different theory levels.

Table 3. MEs, MAEs, and MAPEs are given using the CCSD(T)/CBS data as a reference for cation (Li⁺, Na⁺, Al⁺ and NH₄⁺)-benzene interactions.

Figure 1. Color-mapped RDG isosurface (0.5 au) graphs and scatter diagrams of RDG versus $sign(\lambda_2)\rho$ of cation–benzene complexes at MP2/6-311++G** level.

Figure 2. Molecular electrostatic potential (MESP) profiles at the van der Waals surface (isosurface of electron density = 0.001 au) showing the electrophilic regions and the nucleophilic regions at MP2/6-311++G** level.

Methods Complex C–C^a C–H^b Mⁿ⁺-centroid ^c $\rho_{C-C} d$ $\rho_{BCP}\,{}^{\rm f}$ $\nabla^2 \rho_{BCP} g$ $\rho_{C-H}{}^e$ $Bz(D_{6h})$ 1.395 1.084 0.3085 0.2814 B3LYP/6-311++G** $Bz-Li^+(C_{2V})$ 1.403 1.084 1.842 0.3043 0.2851 0.0172 0.0908 $Bz-Na^+(C_{2V})$ 1.401 1.084 0.3051 0.2840 0.0105 0.0489 2.408 $Bz-Be^{2+}(C_{6V})$ 1.421 1.087 1.293 0.2946 0.2867 0.0559 0.1785 $Bz-Mg^{2+}(C_{2V})$ 1.415 1.086 1.946 0.2980 0.2862 0.0262 0.1109 $Bz-Al^+(C_{2V})$ 1.402 1.084 2.445 0.3053 0.2854 0.0194 0.0248 0.3062 0.2834 0.0124 $Bz-NH_4^+(C_S)$ 1.399 1.084 3.024 0.0331 $Bz(D_{6h})$ 1.400 1.087 0.3156 0.2864 0.2901 0.0163 0.0899 $Bz-Li^+(C_{6V})$ 1.408 1.087 1.870 0.3111 MP2/6-311++G** $Bz-Na^+(C_{6V})$ 1.087 0.3123 0.2889 0.0098 0.0489 1.406 2.434 $Bz-Be^{2+}(C_{6V})$ 1.090 0.3014 0.2919 0.0547 0.1949 1.427 1.300 $Bz-Mg^{2+}(C_{6V})$ 1.420 1.089 1.961 0.3055 0.2911 0.0251 0.1158 $Bz-Al^+(C_{6V})$ 1.408 1.087 2.365 0.3122 0.2905 0.0206 0.0218 $Bz-NH_4^+(C_S)$ 1.405 1.087 2.951 0.3131 0.2883 0.0193 0.0551

Table 1. Geometry optimization and topological properties of electron density (in au) of the complexes calculated at B3LYP/6-311++G** and MP2/6-311++G** levels. The point symmetry of the complex is in parentheses.

^a The average C–C bond length (Å) in benzene; ^b The average C–H bond length (Å) in benzene; ^c The distance (Å) between cation and the center of benzene. ^d The electron densities of the BCPs of C–C bond; ^e The electron densities of the BCPs of C–H bond; ^f The electron densities of the BCPs between cation and benzene; ^g The Laplacian of electron densities of the BCPs between cation and benzene.

Methods		Bz-Li ⁺		Bz-Na ⁺		Bz-Be ²⁺		Bz-Mg ²⁺		Bz-Al ⁺		Bz-NH4 ⁺	
		Е	ΔΕ	Е	ΔΕ	Е	ΔΕ	Е	ΔΕ	Е	ΔΕ	Е	ΔΕ
	6-311++G**	-239.55444	-36.05	-394.33541	-22.30	-246.22589	-226.29	-431.63842	-116.02	-474.42299	-28.66	-289.10606	-14.73
B3LYP	6-311 G**	-239.55355	-36.70	-394.33415	-22.78	-246.22462	-226.52	-431.63716	-116.32	-474.42142	-28.99	-289.10381	-15.05
	6-31 G*	-239.49722	-38.17	-394.27304	-25.45	-246.17522	-233.19	-431.57282	-121.27	-474.35003	-32.31	-289.01847	-15.68
	6-311++G**	-238.77836	-31.03	-393.18469	-18.17	-245.44853	-212.98	-430.48461	-104.88	-473.23434	-30.10	-288.21969	-14.52
MP2	6-311 G**	-238.77462	-33.20	-393.18045	-20.23	-245.44506	-214.53	-430.48058	-106.57	-473.22862	-31.50	-288.21286	-16.20
	6-31 G*	-238.65905	-35.20	-393.06149	-23.28	-245.34110	-224.19	-430.36157	-112.44	-473.09798	-34.26	-288.03577	-15.89
RPA@PBE ^a		-240.48411	-38.74	-395.49636	-24.89	-247.16408	-231.99	-432.99764	-122.16	-475.96441	-35.01	-290.26086	-18.33
RPA@PBE ^b		-240.48411	-38.74	-395.49642	-24.91	-247.16407	-231.95	-432.99757	-122.14	-475.96453	-35.03	-290.26081	-18.25
RPA@PBE ^c		-240.48369	-38.85	-395.49681	-25.03	-247.16392	-232.54	-432.99728	-122.64	-475.96561	-35.47	-290.26088	-18.69
RPA@PBE ^d		-240.48361	-38.98	-395.49542	-25.06	-247.16368	-233.02	-432.99665	-122.63	-475.96624	-35.69	-290.26096	-18.53
RPA@PBE ^e		-240.48365	-38.96	-395.49566	-25.07	-247.16370	-232.98	-432.99677	-122.63	-475.96654	-35.68	-290.26112	-18.61
RPA@PBE ^f		-240.48314	-38.68	-395.49636	-25.09	-247.16388	-232.60	-432.99679	-122.56	-475.96763	-35.59	-290.26098	-18.70
CCSD(T)/aug-cc-pvtz		-239.11608	-36.44	-393.53234	-21.98	-245.78865	-222.49	-430.83317	-114.15	-473.59111	-35.46	-288.66957	-18.45
QCISD(T)/aug-cc-pvtz		-239.11669	-36.44	-393.53295	-21.98	-245.78931	-222.53	-430.83382	-114.18	-473.59173	-35.47	-288.67027	-18.45

Table 2. Total energies considering zero-point vibrational energies correction (E, in Hartree/mol) and binding energies (ΔE , in kcal/mol) with BSSE correction of the cation–benzene complexes at different theory levels.

The input geometry structures of RPA@PBE^a, RPA@PBE^b, RPA@PBE^c, RPA@PBE^d, RPA@PBE^e and RPA@PBE^f calculations are taken from B3LYP/6-311++G**, B3LYP/6-311G**, B3LYP/6-31G*, MP2/6-311++G**, MP2/6-311G** and MP2/6-31G*, respectively.

Methods	ME	MAE	MAPE(%)
B3LYP/6-311++G**	4.79	4.79	16.21
MP2/6-31G*	3.05	3.21	11.35
CCSD(T)/aug-cc-pVTZ	2.14	2.14	7.53
QCISD(T)/aug-cc-pVTZ	2.14	2.14	7.52
RPA@PBE/NAO-VCC-5Z	0.98	2.25	8.31
RPA@PBE*/NAO-VCC-5Z	0.71	2.05	7.69
CCSD(T)/CBS	0	0	0

Table 3. MEs, MAEs, and MAPEs are given using the CCSD(T)/CBS data as a reference for cation (Li⁺, Na⁺, Al⁺ and NH4⁺)–benzene interactions.

Figure 1. Color-mapped RDG isosurface (0.5 au) graphs and scatter diagrams of RDG versus sign(λ_2) ρ of cation-benzene complexes at MP2/6-311++G** level: (a) Li⁺-benzene; (b) Na⁺-benzene; (c) Be²⁺-benzene; (d) Mg²⁺-benzene; (e) Al⁺-benzene; (f) NH₄⁺-benzene. The value of sign(λ_2) ρ on the surface is represented by the color bar.

Figure2. Molecular electrostatic potential (MESP) profiles at the van der Waals surface (isosurface of electron density = 0.001 au) showing the electrophilic regions and the nucleophilic regions at MP2/6-311++G** level. The red and blue points represent the minimum values and maximum values of MESP, respectively. The color code for MESP, in kcal/mol, (a) Li⁺-benzene; (b) Na⁺-benzene; (c) Be²⁺-benzene; (d) Mg²⁺-benzene; (e) Al⁺-benzene; (f) NH₄⁺-benzene.

6