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Derivation of the jump type probabilities

A jump type is defined by the pair of charged oxygen species at the starting site and at the ending site.  
Because of the symmetric arrangement of these oxygen pairs at the starting and ending sites, the 
activation energy for sodium jumps between such sites does not depend on the direction of the jump, 
which reduces the number of possible jump types.  We approximate an isotropic homogeneous medium 
with a simple cubic lattice.  Each site is associated with a pair of charged oxygen, either NBO, CBO, or a 
combination of the two.  Accordingly, we have three types of site occupancies: NBO-NBO pairs, which 
we abbreviate as A for simplicity, CBO-CBO pairs, abbreviated as B, and NBO-CBO pairs, abbreviated 
as X.  Accordingly, we denote by nA, nB, and nX the number of sites occupied by NBO-NBO pairs, CBO-
CBO pairs, and NBO-CBO thereof, respectively

Let us denote by NNBO, NCBO, and NO– the number of non-bridging, charged-bridging, and total charged 
sites, respectively.  We have

(1) N NBON CBO  N
O

We know NO– by design, i.e., as defined by the sodium content of the glasses, and NNBO and NCBO from our 
analysis.  In fact, for NBS glasses we can express the mol fractions of NBO and CBO as

(2)
  
xNBO 

N NBO

N
O


[B 2 ] [Si 3 ]

[B 2 ] [Si 3 ] [B 4 ]

and

, (3)
  
xCBO 

N CBO

N
O


[B 4 ]

[B 2 ] [Si 3 ] [B 4 ]

respectively.  Similarly, for NBG glasses we have

(4)
  
xNBO 

N NBO

N
O


[B 2 ] [Ge3 ]

[B 2 ] [Ge3 ] [B 4 ] 2[Ge6 ]

and

. (5)
  
xCBO 

N CBO

N
O


[B 4 ] 2[Ge6 ]

[B 2 ] [Ge3 ] [B 4 ] 2[Ge6 ]

The probability of certain pairings on a lattice site can be derived as follows.  While A sites account for 
two NBO, X sites are occupied by one NBO.  Hence, the total number of NBO is given by

. (6)  2nA nX  N NBO

Similarly, B sites are occupied by two CBO, whereas X sites contribute only one CBO to the balance, i.e.,

. (7)  2nB nX  N CBO

Dividing both equations by 2 and adding them up yields
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 (8)
  
nA nX nB 

N NBON CBO

2


N
O

2

Dividing by  results in converting the number of sites into fractions, and hence, 
  N O 2

, (9a)
  
x A 

2nA

N
O

, (9b)
  
x X 

2nX

N
O

and . (9c)
  
xB 

2nB

N
O

To evaluate the number of mixed NBO-CBO site occupancies we use a mean field approach.  First, we 
examine every NBO, of which there are NNBO, and determine whether this NBO is sharing its site with a 
CBO.  The probability for this to be the case is simply given by the mol fraction of CBO, i.e., .   N CBO N

O

Hence, the total count of sites with mixed-occupancy is given by the product

. (10)
 
nX  N NBO

N CBO

N
O

Note that this does not lead to double-counting sites with two NBO, because the absence of a CBO 
eliminates that site from the count on both occasions of scrutinizing its two NBO.  As per the above 
definition, Eq. (9b), the fraction of mixed-occupancy sites is

. (11)
  
x X 

2nX

N
O

 2
N NBO

N
O

N CBO

N
O

 2x NBOxCBO

Also, substituting Eq. (10) into Eq. (6) yields

 (12)
  
2nA 

N NBON CBO

N
O

 N NBO

or, after dividing both sides by ,
  N O 2

, (13)
  
2

nA

N
O


N NBON CBO

N
ON O


N NBO

N
O

 x A  x NBOxCBO  x NBO

and after rearranging, the fraction of sites occupied by two NBO is

. (14)
  x A  x NBO xCBO 1  0 x A  x NBO 1 xCBO  xNBO

2

Similarly, we can derive the expression for the fraction of sites occupied by two CBO as

. (15)
  xB  xCBO xNBO 1  0 xB  xCBO 1 x NBO  xCBO

2

Combining Eqs. (11), (14), and (15) we can verify that the fractions are normalized, i.e., 
, since .

  x A  x X  xB  xNBO
2  2x NBOxCBO  xCBO

2  xNBO  xCBO 2  1   xNBO xCBO 1
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Now we examine the jump type probabilities.  The jump type is identified based on the pairing of pairs.  
Assuming that the forward and reverse jumps between two arbitrary type of sites are on average 
associated with the same activation barrier, which is to be expected or else the glass would undergo phase 
separation, we can distinguish between six jump types: AA, where both starting and ending cation sites 
involve two NBO, BB, the jump between two pairs of CBO, AB, where on site has two NBO and the 
other site has two CBO, AX, where one site has a pair of NBO and other site a mixture of NBO and CBO, 
BX, where one site has a pair of CBO and other site a mixture of NBO and CBO, and XX, where both 
sites have a mixture of NBO and CBO.  Given the aforementioned simple cubic lattice, there are z = 6 
choices for a sodium cation to jump from any given site to a nearest-neighbor site.  This value for z 
represents the geometry factor in the coefficient for diffusion in an isotropic medium.  

all AA-jumps are shared between two A-sites, 

To derive the jump probabilities between an A-site and any other site, we count all z jump connections 
emanating from every A-site in the system, which covers all AA-jumps twice, and all AB-jumps and AX-
jumps once.  Hence,

, (16)  znA  2uAA  uAB  uAX

where we denote by uJK the number of jump connections between J- and K-sites.  Similarly,

, (17)  znB  2uBB  uAB  uBX

and

. (18)  znX  2nXX  nAX  nBX

The number of jumps connecting different types of sites can be derived using a similar argument as for 
obtaining Eq. (10), i.e., given an A-site as a starting point, z jumps are possible to a nearest-neighbor site.  
Accounting for all A-sites, there are znA jumps.  The probability that the neighbor site is a B-, respectively, 
X-site is simply equal to the fraction of those sites.  Hence,

 (19)
 
uAB  znA

nB

N
 znA xB

where N = nA + nB + nX.  For the same argument given above, this construct prevents over-counting of 
jump connections.  Similarly,

, (20) uAX  znA x X

and

 (21) uBX  znBx X

Substituting Eqs. (19)-(21) in Eqs. (16)-(17) yields

 , (22)
  
znA  2uAA znA xB znA x X  uAA 

znA

2
1 xB  x X 

 , (23)
  
uBB 

znB

2
1 x A  x X 

and
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 . (24)
  
uXX 

znX

2
1 x A  xB 

Dividing both sides of Eqs. (19)-(24) by N yields

(25) qAB  zx A xB

(26) qAX  zx A x X

 (27) qBX  zxBx X

 (28)
  
qAA 

zx A

2
1 xB  x X 

  (29)
  
qBB 

zxB

2
1 x A  x X 

 (30)
  
qXX 

zx X

2
1 x A  xB 

While all xK are normalized to unity, the q-quantities are not.  Indeed, the sum of these six fractions is

 

  

qAA  qBB  qXX  qAB  qAX  qBX 
zx A

2
1 xB  x X  zxB

2
1 x A  x X  zx X

2
1 x A  xB 

z x A xB  x A x X  xBx X 

 

  


z
2

x A  xB  x X  x A xB  x A x X  xBx A  xBx X  x X x A  x X xB 

z x A xB  x A x X  xBx X 


z
2

x A  xB  x X  2x A xB  2x A x X  2xBx X   z x A xB  x A x X  xBx X 


z
2

x A  xB  x X 

and ultimately,

, (31)
  
qAA  qBB  qXX  qAB  qAX  qBX 

z
2

which, as expected, is the number of jump connections per cation site (i.e., counting jumps in one 
direction only).  Hence, dividing each q-quantity by z/2 yields the normalized probabilities for each jump 
type,

, (32)
  pAA  x A 1 xB  x X 

, (33)
  pBB  xB 1 x A  x X 

, (34)
  pXX  x X 1 x A  xB 

, (35)  pAB  2x A xB

 , (36)  pAX  2x A x X
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 . (37)  pBX  2xBx X

In these expressions we substitute the xK variable using Eqs. (11), (14), and (15), and in turn Eqs. (2)-(5) 
to substitute xNBO and xCBO in these equations.
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Fig. 6 Jump type probabilities for (a) sodium borosilicate glasses and (b) sodium borogermanate glasses.  Each 
jump type is identified by the pair of charged oxygen atoms at the starting site and that at the ending site, separated 
by a hyphen, where the letter N represents a non-bridiging oxygen and the letter B represents a charged bridging 
oxygen.
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