Supporting Information

Pd-P nanoparticles supported on P_xO_v -incorporated carbon nanotubes

for enhanced methanol oxidation in alkaline medium

Ya'nan Xie,^a Weizhen Yu,^a Juan Wang,^a Yifei Wu,^a Shuo Niu,^a Wenyao Guo,^a Tsungwu Lin^b and

Lidong Shao*a

^a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China. E-mail: lidong.shao@shiep.edu.cn.

^b Department of Chemistry, Tunghai University, No. 181, Sec. 3, Taichung Port Rd., Taichung City 40704, Taiwan.

1. Experimental

1.1 preparation of Pd-P/PSCNTs、 Pd-P/LPCNTs

Pristine carbon nanotubes (PSCNTs) were purchased from Pyrograf Products Inc. (Ohio, USA). LPCNTs were obtained by heating 50 mg OCNTs with 0.663 g sodium hypophosphite (NaH₂PO₂) at 600 °C under He gas.

Sodium citrate (0.22 g) was dissolved in water (10 mL), and a solution of $PdCl_2$ (2.66 mL, 0.056 M) in 0.27 M aqueous NaCl was added. The pH value was adjusted to 10 using 0.1 M sodium hydroxide, followed by addition of PSCNTs or LPCNTs (60 mg). After 30-min sonication, aqueous NaH₂PO₂ (10 mL, 0.1 M) was dropwise added to the slurry under vigorous stirring at a rate of 0.5 mL/min. After being continuously stirred at 80 °C for 4 h under reflux, the resulting suspension was filtered, and the solids were washed with distilled water and vacuum-dried at 70 °C for 7 h to obtain Pd-P/PSCNTs or Pd-P/LPCNTs with 20 wt.% Pd loading theoretically.

1.2 Preparation of Pd/PCNTs and Pd/OCNTs

242.08 μ L Pd(NO₃)₂ (Sigma-Aldrich) were added to 10 mL of ethanol containing 50 mg PCNTs or OCNTs under sonication. The solvent was then removed through magnetic stirring at 45 °C. Finally, the collected powder was annealed in a tube furnace at 250 °C under a He/H₂ atmosphere to produce Pd/PCNTs and Pd/OCNTs catalysts with 20 wt.% Pd loading theoretically.

Figure S1. Histogram of Pd loadings and EASAs of Pd-P/PCNTs, Pd-P/OCNTs, Pd-P/PCNTs, Pd/PCNTs and Pd/OCNTs.

Figure S2. CV curves of (a) Pd-P/PCNTs, (b) Pd-P/OCNTs, (c) Pd-P/PSCNTs, (d) Pd/PCNTs and (e) Pd/OCNTs in 0.5 M NaOH with mass-normalized current (A) and EASA-normalized current (B); in 0.5 M NaOH + 1 M CH₃OH with mass-normalized current (C) and EASA-normalized current (D) at a scan rate of 50 mV s⁻¹.

Figure S3. Tafel plots for methanol oxidation on (a) Pd-P/PCNTs and (b) Pd-P/OCNTs in 0.5 MNaOH+1MCH₃OHsolution.

Figure S4. Scatter plot of forward peak current density vs. cycle number in 0.5 M NaOH + 1 M CH₃OH of (a) Pd-P/PCNTs and (b) Pd-P/OCNTs.

Figure S5. CV curves of Pd-P/PCNTs and Pd-P/LPCNTs in 0.5 M NaOH + 1 M CH₃OH at a scan rate of 50 mV s⁻¹ with the insets of EDX mapping of P of (a) PCNTs and (b) LPCNTs.

Working Electrode	Testing Conditions	EASA (cm ² mg ⁻¹)	Mass Activity (mA mg ⁻¹)	Specific Activity (mA cm ⁻¹)	Reference
Pd-P/PCNTs	0.5M NaOH 1M CH₃OH	729.8	772.67	1.06	This work
Pd-P/OCNTs	0.5M NaOH 1M CH₃OH	798.1	533.51	0.67	This work
Pd/PCNTs	0.5M NaOH 1M CH₃OH	741.1	574.02	0.77	This work
Ni@Pd/MWCNTs	0.5M NaOH 1M CH₃OH	1762.0	770.7	0.44	[1]
Pd-Ag(1:1)/CNTs	1М КОН 1М СН ₃ ОН	1.14cm ⁻²	—	0.950	[2]
8nm Pd-Ni-P NPs	0.5М КОН 1М СН₃ОН	629.0	360.00	0.57	[3]
17nm Pd-Ni-P NPs	0.5M KOH 1M CH₃OH	283.0	170.00	0.60	[3]
Pd ₂ /P ₁	1M KOH 1M CH₃OH	507.01	844.74	1.67	[4]
Pd/polypyrrole- -graphene	0.5M NaOH 1M CH₃OH	418.0	359.8	0.86	[5]

Table S1. Comparison of various catalysts with EASA, mass activity and specific activity in thisstudy and reported Pd-based catalysts.

Reference

[1] Y. C. Zhao, X. L. Yang, J. N. Tian, F. Y. Wang, L. Zhan, International Journal of Hydrogen Energy, 2010, **35**, 3249-3257.

[2] Y. Wang, Z. M. Sheng, H. B. Yang, S. P. Jiang, International Journal of Hydrogen Energy, 2010, **35**, 10087-10093.

[3] M. Zhao, K. Abe, S. I. Yamaura, Y. Yamamoto, N. Asao, Chemistry of Materials, 2014, 26, 1056-1061.

[4] K. Zhang, C. Q. Wang, D. Bin, J. Wang, B. Yan, Y. Shiraishi, Y. Dou, Catalysis Science & Technology, 2016, 6, 6441-6447.

[5] Y. C. Zhao, L. Zhan, J. N. Tian, S. L. Nie, Z. Ning, Electrochimica Acta, 2011, 56, 1967-1972.