Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

Mechanistic Insight into Selective Catalytic Combustion of

HCN over Cu-BEA: Influence of Different Active Center

Structures

Ning Liu^{a,b,c}, Xiaoning Yuan^{a,b}, Runduo Zhang^{a,b*}, Yingxia Li^{a,b}, Biaohua Chen^a

- ^a State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- ^b Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, 100029, China
 - ^c Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, 213164, China

 $Corresponding\ authors:\ Zhang@mail.buct.edu.cn$

Tel: 86-10-64412054; Fax: 86-10-64419619

Mulliken Charge	Transfer	Analysis

S1

Table S1a. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]-Z (energy in kcal·mol⁻¹, diameter in Å, angle in °) **S3**

Table S1b. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]₂-Z (energy in kcal mol⁻¹, diameter in Å, angle in °) **S5**

Table S1c. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]₂-O-Z (energy in kcal mol⁻¹, diameter in Å, angle in °) **S6**

Table S2 Mulliken atomic charges of each component in the models involved in Route I over 24T-Cu-BEA with different active centers. **S8**

Table S3 Mulliken charge ratio (MCR) of each component in the models involved in Route I over 24T-Cu-BEA with different active centers. **S9**

Table S4a DFT energy calculation of each reaction step during HCN-SCC over 24T-[Cu]-Z. S10 Table S4b DFT energy calculation of each reaction step during HCN-SCC over24T-[Cu]₂-Z. S11 **Table S4c** DFT energy calculation of each reaction step during HCN-SCC over 24T-[Cu]₂-O-Z.

Mulliken Charge Transfer Analysis

In present work, the Mulliken charge transfer (CT) analysis was employed to quantitatively describe the electric effects of Cu-BEA with different active center structures of single [Cu]⁺, double [Cu]⁺, and [Cu-O-Cu]²⁺ during HCN-SCC. The Route I (Route IA, IB, IC), including HCN adsorption and further oxidation into HNCO or NCO, was taken into account during the CT analysis. Firstly, based on the DFT calculation results of Mulliken atomic population analysis, the atomic charge of each component of the constructed 24T-Cu-BEA model was collected and listed in Table S2. As noted, herein the atomic Si, Al, O, and H of zeolite framework were considered as a whole part, with the related atomic Mulliken charges being added together and represented as Zeolite.

In order to clearly display the charge transfer (CT) routes of each reaction step, atomic charge transfer (ACT) and Mulliken charge ratio (MCR) are cited and formulated as follows:

$$Q(ACT)_{M} = Q(M)_{P} - Q(M)_{R}$$
 Eq. (S1.1)

$$MCR_{A} = \frac{Q(ACT)_{A}}{\sum Q(ACT)_{A}} \times 100\%$$
 Eq. (S1.2)

$$MCR_{D} = \frac{Q(ACT)_{D}}{\sum Q(ACT)_{D}} \times 100\%$$
 Eq. (S1.3)

In Eq.(S1.1) $Q(M)_P$ and $Q(M)_R$ respectively delegate the Mulliken atomic charges of the component M in a product state and reactant state; $Q(ACT)_M$ is the CT amount of the component M in each reaction step. The component M acting as a charge acceptor generally associates with a negative value of $Q(ACT)_A$, vice versa for $Q(ACT)_D$. As formulated by Eq.(S1.2) and Eq.(S1.3), which individually describe the MCR calculations for the charge acceptor (MCR_A) and charge donor (MCR_D). The $\Sigma Q(ACT)_A$ and $\Sigma Q(ACT)_D$ respectively represent the total CT of all the charge acceptors and donors. Obviously, MCR_D is positive yielding a Σ MCRD of 100%,

whereas MCR_A is negative resulting in a ΣMCR_A of -100%. The sum of MCR_A and MCR_D is thus equal to zero. The calculated MCR values of each component involved in the constructed models of Route I were listed in Table S3. The CT profiles of Figures 4a-4i of the main text was derived from the MCR data listed in Table S3.

Table S1a. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]-Z (energy in kcal·mol⁻¹, diameter in Å, angle in °)

Reaction Routes	Energy Barrier (kcal mol ⁻¹)	Structures	Gas Phase		ASa	TS^b		Product
		Cu-N	-		1.92	-		-
		Cu-O	-		1.90	2.0		-
		C-N	1.16		1.29	1.26	-)	1.20
		C-O	-		1.32	1.25	i	1.19
Route IA	23.8	С-Н	1.07		1.09	1.17	•	-
		N-H	-		-	-		1.01
		∠N-C-H	180.0		128.0	93.0)	-
		∠H-N-C	-		-	-		129.2
		∠N-C-O	-		109.6	142.	.5	171.4
		Cu-N	-		1.91	1.80)	1.77
		N-H	1.01		1.04	1.03	1	1.03
		N-C	1.22		1.42	2.0		-
Danta IIA	7 1	$C-O_1$	1.17		1.18	1.17	•	1.17
Route IIA	7.1	$C-O_2$	-		1.31	1.20)	1.17
		$\angle O_1$ -C- O_2	-		143.2	162.	.1	178.5
		∠H-N-C	124.5		114.2	-		-
		∠N-C-O	172.2		143.9	-		-
		Structures	Gas Phase	AS	TS1	IM ^c	TS2	Product
		Cu-N	-	1.92	1.88	1.98	-	-
		$N-H_1$	-	1.03	1.02	1.02	1.03	1.04
Douts III A	7.9	N-O	-	1.61	1.77	1.44	1.53	1.32
Route IIIA	72.3	N-H ₂	-	-	1.31	1.02	1.02	1.04
		N-H ₃	-	-	-	-	1.07	1.10
		O-H ₂	0.97	0.98	1.11	-	-	-

$O-H_3$	0.97	1.01	0.99	0.98	1.48	2.05	
∠H ₂ -O-H ₃	103.7	106.1	109.3	-	-	-	

^a Adsorption state^b Transition state^c Intermediate

Table S1b. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]₂-Z (energy in kcal mol⁻¹, diameter in Å, angle in °)

Reaction routes	Energy Barrier (kcal mol ⁻¹)	Structures	Gas phase	AS^{a}	TS^b	Product
		Cu ₁ -N	-	1.80	1.82	1.92
		Cu_2 - O_2	-	-	1.85	2.03
		C-N	1.16	1.28	1.27	1.25
		$C-O_1$	-	1.26	1.18	1.16
Route IB	1.6	$C-O_2$	-	1.39	1.81	2.29
		O_2 -H	-	0.99	0.98	1.01
		$\angle N$ -C-O ₁	-	128.5	157.1	174.9
		С-Н	1.07	-	-	-
		∠N-C-H	180.0	95	-	-
		Cu-N	-	1.97	1.95	-
		N-C	1.23	1.29	1.56	-
Route IIB	6.0	$C-O_1$	1.18	1.15	1.15	1.14
		$N-O_2$	-	1.31	1.21	1.15
		$\angle N$ -C-O ₁	180.0	171.3	135.8	-
		Cu-N ₁		1.91	1.91	1.92
		N_1 -C	1.23	1.50	1.64	-
		$C-O_1$	1.18	1.17	1.17	1.17
Dauta IIID	1 /	N_1 - N_2	-	1.26	1.20	1.11
Route IIIB	1.4	$C-O_2$	-	1.39	1.31	1.16
		N_2 - O_2	1.16	1.47	1.73	-
		$\angle N_1$ -C-O ₁	180.0	136.8	128.0	-
		$\angle O_1$ -C- O_2	-	134.2	139.1	179.0

^a Adsorption state ^b Transition state

Table S1c. Optimized structural parameters of HCN-SCC mechanism over 24T-[Cu]₂-O-Z (energy in kcal mol⁻¹, diameter in Å, angle in $^{\circ}$).

Reaction Routes	Energy Barrier (kcal mol ⁻¹)	Structures	Gas Phase		ASa	TS^{b}		Product
		Cu ₁ -N	-		1.93	-		-
		Cu ₁ -O	-		1.98	1.99)	2.12
		Cu ₂ -O	-		1.95	1.98	3	2.10
		C-N	1.16		1.27	1.24	ļ	1.17
D I.G	21.5	C-O	-		1.35	1.33	3	1.22
Route IC	21.5	С-Н	1.07		1.09	1.12	2	-
		N-H	-		-	-		1.03
		∠N-C-H	180.0		128.2	103	.4	-
		∠H-N-C	-		-	-		156.6
		∠N-C-O	-		110.3	142	.0	175.9
		Cu ₁ -N	-		1.94	1.84	ļ	1.83
		Cu ₂ -N	-		1.97	2.00)	1.84
		N-H	1.01		1.03	1.03	3	1.03
		N-C	1.22		1.45	-		-
Route IIC	14.7	$C-O_1$	1.17		1.20	1.17	7	1.17
		$C-O_2$	-		1.30	1.21		1.17
		$\angle O_1$ -C- O_2	-		130.3	157	.2	179.1
		∠H-N-C	124.5		109.0	-		-
		∠N-C-O	172.2		124.7	_		-
		Structures	Gas Phase	AS	TS1	IM ^c	TS2	Product
_	26.3	Cu ₁ -N	-	1.83	1.90	1.97	-	_
Route IIIC	74.3	Cu ₂ -N	-	1.85	2.02	-	-	-

$N-H_1$	-	1.03	1.02	1.02	1.02	1.04	
N-O	-	2.34	2.03	1.44	1.52	1.41	
N-H ₂	-	-	1.08	1.02	1.02	1.03	
$N-H_3$	-	-	-	-	1.11	1.03	
$O-H_2$	0.97	0.97	1.47	-	-	-	
$O-H_3$	0.97	0.97	0.98	0.98	1.48	-	
$\angle H_2$ -O- H_3	103.7	104.5	-	-	-	-	

^a Adsorption state ^b Transition state ^c Intermediate

Table S2 Mulliken atomic charges of each component in the models involved in RouteI over 24T-Cu-BEA with different active centers.

Mulliken atomic charge/a.u.	24T-[Cu]-Z ^a +O +HCN	24T-[Cu]-O-Z- HCN	TSA1	24T-[Cu]-Z- HNCO
Q(Zeolite)	-0.2046	-0.3224	-0.3281	-0.4291
Q(Cu)	0.6175	0.5339	0.3291	0.2894
Q(O)	-0.4129	-0.4745	-0.4536	-0.3777
Q(H)	0.2496	0.19	0.2332	0.3977
Q(C)	0.1086	0.4359	0.342	0.657
Q(N)	-0.3582	-0.3629	-0.1226	-0.5373
Mulliken atomic charge/a.u.	24T-[Cu] ₂ -Z ^b +2O +HCN	24T-[Cu] ₂ -2O-Z- HCN	TSB1	24T-[Cu] ₂ -NCO- OH
Q(Zeolite)	-0.4947	-0.5451	-0.524	-0.6237
Q(Cu1)	0.5414	0.4585	0.4079	0.2477
Q(O1)	-0.2916	-0.4609	-0.329	-0.2278
Q(Cu2)	0.5432	0.2847	0.3921	0.2164
Q(O2)	-0.2983	-0.581	-0.7398	-0.5644
Q(H)	0.2496	0.4984	0.5078	0.5343
Q(C)	0.1086	0.7824	0.7247	0.6764
Q(N1)	-0.3582	-0.437	-0.4397	-0.2589
Mulliken atomic charge/a.u.	24T-[Cu] ₂ -O-Z ^c +HCN	24T-[Cu] ₂ -O-Z- HCN	TSC1	24T-[Cu] ₂ -HNCO
Q(Zeolite)	-0.3336	-0.5061	-0.4628	-0.5126
Q(Cu1)	0.4283	0.4579	0.2455	0.1374
Q(Cu2)	0.5071	0.3268	0.3359	0.2045
Q(O)	-0.6018	-0.5708	-0.5773	-0.4667
Q(H)	0.2496	0.2104	0.2749	0.4389
Q(C)	0.1086	0.4203	0.2903	0.6478
Q(N)	-0.3582	-0.3385	-0.1065	-0.4493

^a24T-[Cu]-Z represents Cu-BEA with single [Cu]⁺ active center

^b24T-[Cu]₂-Z represents Cu-BEA with double [Cu]⁺ active center

^{°24}T-[Cu]₂-O-Z represents Cu-BEA with double [Cu-O-Cu]²⁺ active center

Table S3 Mulliken charge ratio (MCR) of each component in the models involved in Route I over 24T-Cu-BEA with different active centers.

Model	MCR/%	Reaction Step A1	Reaction Step A2	Reaction Step A3
	Zeolite	-35.99	-1.87	-18.19
	Cu	-25.54	-67.28	-7.15
24T [C-1 72	O	-18.82	6.87	13.67
24T-[Cu]-Z ^a	Н	-18.21	14.19	29.62
	C	100	-30.85	56.72
	N	-1.44	78.94	-74.67
Model	MCR/%	Reaction Step B1	Reaction Step B2	Reaction Step B3
	Zeolite	-5.46	7.82	-20.6
	Cu1	-8.99	-18.75	-33.11
	O1	-18.35	48.89	20.91
24T [C] 7h	Cu2	-28.02	39.81	-36.31
24T-[Cu] ₂ -Z ^b	O2	-30.64	-58.86	36.25
	Н	26.97	3.48	5.48
	C	73.03	-21.39	-9.98
	N1	-8.54	-1	37.36
Model	MCR/%	Reaction Step C1	Reaction Step C2	Reaction Step C3
	Zeolite	-44.01	12.41	-7.88
	Cu1	7.55	-60.88	-17.1
	Cu2	-45.99	2.61	-20.79
24T-[Cu] ₂ -O-Z ^c	О	7.91	-1.86	17.5
	Н	-10	18.49	25.94
	C	79.51	-37.26	56.56
	N	5.03	66.49	-54.23

^a24T-[Cu]-Z represents Cu-BEA with single [Cu]⁺ active center

^b24T-[Cu]₂-Z represents Cu-BEA with double [Cu]⁺ active center

^{°24}T-[Cu]₂-O-Z represents Cu-BEA with double [Cu-O-Cu]²⁺ active center

Table S4a DFT energy calculation of each reaction step during HCN-SCCover 24T-[Cu]-Z.

	Reaction steps	Energy/ kcal·mol ⁻¹
	Step A1	-55.8
Route IA	Step A2	23.8
	Step A3	-86
	Step A4	-95.6
Route IIA	Step A5	7.1
	Step A6	-4.6
	Step A7	-8.3
	Step A8	7.9
Route IIIA	Step A9	-50.5
	Step A10	72.3
	Step A11	-20.9

Table S4b DFT energy calculation of each reaction step during HCN-SCC over24T-[Cu]₂-Z.

	Reaction steps	Energy/ kcal·mol-1
Route IB	Step B1	-97.7
	Step B2	1.6
	Step B3	-11
	Step B4	-94.5
Route IIB	Step B5	6
	Step B6	-38.2
Route IIIB	Step B7	11.7
	Step B8	1.4
	Step B9	-114.5

Table S4c DFT energy calculation of each reaction step during HCN-SCC over 24T-[Cu]₂-O-Z.

	Reaction steps	Energy/ kcal·mol ⁻¹
	Step C1	-18.8
Route IC	Step C2	21.5
	Step C3	-78.2
	Step C4	-134
Route IIC	Step C5	14.7
	Step C6	-16.1
	Step C7	-2.1
Route IIIC	Step C8	26.3
	Step C9	-35.4
	Step C10	74.3
	Step C11	-87