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MD SIMULATION
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Figure S1. Density evolution for the NPT simulation (as described at page 4, section
MM/MD) for modell.
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Figure S2. Density evolution for the NPT simulation (as described at page 4, section
MM/MD) for model?2.
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Figure S3. Density evolution for the NPT simulation (as described at page 4, section
MM/MD) for model3.
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Figure S4. Visualization of the columnar structure of the 3 molecule species studied in
the present paper, after MD equilibration. Projection on the xy plane of the core of the
discotic molecules.
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Figure S5. Visualization of the columnar structure for 1.
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Figure S6. Visualization of the columnar structure of specie 2.
140 e o J
120
100 1 » » -
80
~ » Y & o
3
S 60
] & L e
40 24
53°
20 - 2 . e
0 ay % e
—20 ' ‘
40 -20 O 20 40 60 80 100 120
x (A)

Figure S7. Visualization of the columnar structure of specie 3.



DFT-calculated Potential Energy Surfaces

Here we report the calculated rigid potential energy surfaces (PES) in dimers formed by
two N-methyl substituted triindole molecules as a function of rotation of one molecule
around the stacking axis. Figure 8 shows the comparison between model dimers of a
non-peripherically substituted N-methyl triindole adopting the two different
conformations found in the crystal structure (named as cofacial dimer 1 and cofacial
dimer 2 conformations). As noted, in both cases, the PES energy minimum is located at
60° with the maximum found for the cofacial configuration. It is also interesting to note
that the energy barrier obtained between the cofacial and 60° staggered conformation is
slightly affect by the peripheral substitution (see Figure 9 for the comparison between a
dimer model of a non-peripherically substituted triindole and alkynyl-substituted
triindole 3). Therefore, the PES calculations are in agreement with the electrostatic
surface potential previously reported in the manuscript, giving support to the 60° rotated

structure found in the supramolecular arrangement.
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Figure S8. Rigid potential energy surface, computed at the ®B97XD/6-31G**, in
dimers formed by two N-methyl substituted triindole molecules as a function of rotation
of one molecule around the stacking axis. The intermolecular distance is set at 3.65 A,
the average intermolecular separation found in the N-methyl substituted triindole

crystals along the 7-stacks.
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Figure S9. Rigid potential energy surface, computed at the ®wB97XD/6-31G**, in
dimers formed by two non-peripherically substituted triindole molecules and two
alkynyl-susbtituted triindoles 3 as a function of rotation of one molecule around the

stacking axis. The intermolecular distance is set at 3.65 A.



