ELECTRONIC SUPPORTING INFORMATION

Stepwise Microhydration of Aromatic Amide Cations: Water Solvation Networks Revealed by Infrared Spectra of Acetanilide⁺-(H₂O)_n Clusters (n≤3)

Johanna Klyne,^a Matthias Schmies,^a Mitsuhiko Miyazaki,^{a,b} Masaaki Fujii,^b Otto Dopfer^a*

^a Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
^b Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

* Corresponding author: Fax: (+49) 30-31423018, E-Mail: dopfer@physik.tu-berlin.de

Table S1. Calculated and experimental proton donor stretch frequencies of the acidic NH group (v_{NH} in cm⁻¹) and corresponding frequency red shifts (Δv_{XH} in cm⁻¹) of H-bonded AA⁺-L(NH) and FA⁺-L(NH) clusters as well as proton affinities (PA, in kJ mol⁻¹) of the ligands (L=Ar, N₂, H₂O, and (H₂O)₂).

۸	Monomor						1 – N					
A	wonomen		L = He		L = AI		$L = N_2$		$L = H_2 O$		$L = (\Pi_2 U)_2$	
PA			178		369		494		691		808	
	ν _{NH} exp	ν _{NH} calc	Δν _{NH} exp	$\Delta v_{\rm NH}$ calc	Δv_{NH} exp	Δv_{NH} calc	Δν _{NH} exp	Δv_{NH} calc	Δν _{NH} exp	Δv_{NH} calc	Δv_{NH} exp	$\Delta v_{\rm NH}$ calc
AA ⁺	3385	3385	0	-2	-12	-45	-30	-61	-215	-246	-461	-396
FA ⁺	3380	3381			-15	-30	-35	-70	-350	-296	-592	-471

Figure S1. Structures of neutral c-/t-AA and most stable isomers of t-AA-H₂O calculated at the ω B97X-D/aug-cc-pVTZ level. Relevant structural, energetic, and vibrational parameters are listed in Table 2. Relative energies (E₀) and binding energies (D₀) are given in cm⁻¹, while intermolecular (red) and intramolecular N-H, C=O, and O-H (black) bond lengths are given in Å.

Figure S2. Structure of the t-AA⁺-H₂O(NH)-Ar(π) isomer calculated at the ω B97X-D/aug-cc-pVTZ level. Relevant structural, energetic, and vibrational parameters are listed in Table 2. Binding energies (D₀) are given in cm⁻¹, while intermolecular (red) and intramolecular N-H, C=O, and O-H (black) bond lengths are given in Å.

Figure S3. IRPD spectra of AA⁺-H₂O and AA⁺-H₂O-Ar in the X-H stretch range compared to linear IR absorption spectra of t-AA⁺-H₂O(NH)(-Ar(π)), t-AA⁺-H₂O(CO), and c-AA⁺-H₂O(NH)(-Ar(π) calculated at the ω B97X-D/aug-cc-pVTZ level (Table 1). The dashed lines indicate the experimental frequencies of bare t-AA⁺ (v_{NH}=3385 cm⁻¹) and H₂O (v^{a/s}_{OH}=3756/3657 cm⁻¹). All computed spectra are drawn to the same intensity scale but the intensities of the bound v_{NH} transition in the c-/t-AA⁺-H₂O(NH) spectra are multiplied by 0.1.

Figure S4. REMPI-IR (IR dip) spectra of t-AA⁺-H₂O(NH) and t-AA⁺-H₂O(NH) generated by REMPI³ compared to EI-IR (IRPD) spectra of AA⁺-H₂O and AA⁺-H₂O-Ar employing the EI ion source.

Figure S5. IRPD spectra of AA^+-H_2O-L with L=Ar and N₂ in the fingerprint range (loss of L) compared to linear IR absorption spectra of c-/t-AA⁺-H₂O(NH)(-Ar(π)) and c-/t-AA⁺ calculated at the ω B97X-D/aug-cc-pVTZ level. The positions, widths, and vibrational and isomer assignments of the transitions observed are listed in Table 1. For comparison, the IRPD spectrum of AA⁺-Ar with the labeling of the transitions is reproduced from Ref. 59.

Figure S6. Comparison of the IRPD spectrum of cold cationic AA^+-H_2O -Ar and the IR dip spectrum measured for neutral t-AA-H₂O(NH) and t-AA-H₂O(NH),³ and their corresponding linear IR absorption spectra calculated at the ω B97X-D/aug-cc-pVTZ level.

Figure S7. Comparison of the IRPD spectra of AA^+ -L_n with L=He, Ar, N₂, ⁵⁹ and H₂O obtained in the X-H stretch range.

Figure S8. NBO charge distribution (in me) of t-AA⁽⁺⁾ and c-AA⁽⁺⁾ in the S₀ and D₀ state calculated at the ω B97X-D/aug-cc-pVTZ level.

 $E_0 = 0$

 $E_0 = 694$

 $D_0 = 1364$

