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Experimental procedure

UV-vis absorption spectra were recorded on a Perkin Elmer Lambda 650 spectrometer on solutions having 
concentration approximately 10-5 M. Fluorescence spectra were measured with a Fluoromax-3 Horiba Jobin 
Yvon spectrofluorometer on diluted solutions having maximum optical density < 0.1. Emission spectra were 
corrected for the wavelength-dependent efficiency of the detection system.

The two-state model for D-π-A dyes in solution

We shortly summarize the two-state model for D-π-A dyes, as discussed in refs 17-19 (main text). The 
electronic structure of a D-π-A dyes dye is described in terms of two orthogonal basis states, |N⟩ and |Z>, 
corresponding to the neutral D-π-A and to the zwitterionic D+-π-A- resonating structures, respectively (see 
Fig. 2, main text). The two states are separated by an energy gap 2z and are mixed by a matrix element τ, 
the relevant Hamiltonian being:

                                                  (1)𝐻𝑒𝑙 = 2𝑧𝜌̂ ‒ 𝜏̂

where   is the ionicity operator and . The dipole moment operator is defined as 𝜌̂ = �|𝑍⟩⟨𝑍|� ̂ = �|𝑍⟩⟨𝑁|� + �|𝑁⟩⟨𝑍|�

, where μ0 is the dipole moment of the zwitterionic state. 𝜇̂ = 𝜇0𝜌̂

The coupling between electronic and vibrational degrees of freedom is important to reproduce spectral 
bandshapes and the model must be extended in this direction. Accordingly, we introduce an effective 
vibrational coordinate, Q, accounting for the different equilibrium geometry associated with the two 
electronic basis states. The coupled Hamiltonian is written as:

                                    (2)
𝐻𝑚𝑜𝑙 = 2𝑧𝜌̂ ‒ 𝜏̂ + 𝜔𝑣 2𝜀𝑣𝑄 +

1
2(𝑃2 + 𝜔𝑣𝑄2)

where Q and P are the harmonic coordinate and conjugate momentum, characterized by a frequency ωv 
and a relaxation energy εv. The coupled electronic and vibrational problem described by the Hamiltonian in 
Eq. 2 is solved in a non-adiabatic approach. In short, the Hamiltonian matrix is written on the basis obtained 
as the direct product of the electronic states times the eigenstates of the harmonic oscillator described by 
the last term in Eq. 2, and then diagonalized to get numerically exact non-adiabatic eigenstates. Of course 
the infinite basis of the harmonic oscillator is truncated to the first M states, with M large enough to reach 
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convergence (typically M = 10 is enough). The eigenstates of the non-adiabatic Hamiltonian enter the sum-
over-states expressions for linear and nonlinear optical spectra, as described below. 

Finally we introduce the interaction with the solvent. As discussed in previous literature [A. Painelli, 
Chemical Physics 1999, 245, 185], we explicitly account for the slow, orientational component of the 
reaction field, For. The fast electronic component of the reaction field enters into the model with a 
renormalization of molecular parameters. However, thanks to the marginal variability of the refractive 
index of common organic solvents, we adopt solvent-independent molecular parameters. The orientational 
component of the reaction field enters the molecular Hamiltonian as follows:

                         (3)
𝐻 = 𝐻𝑚𝑜𝑙 ‒ 𝐹𝑜𝑟𝜇0𝜌̂ +

𝜇2
0

4𝜀𝑜𝑟
𝐹 2

𝑜𝑟

where εor is the solvent relaxation energy, a parameter that increases with the solvent polarity. Because of 
the second term in Eq. 3, the Hamiltonian acquires a dependence on For. Accordingly, we diagonalize the 
Hamiltonian matrix written on the non-adiabatic basis for different values of For obtaining For-dependent 
eigenstates and eigenvectors. These quantities enter into the calculation of For-dependent optical spectra. 
The overall spectra are finally obtained summing up spectra calculated for different For values, weighting 
each spectrum according to the Boltzmann distribution of the relevant state. Specifically, for linear and 
nonlinear absorption spectra as well as for the HRS spectra we consider the Boltzmann distribution relevant 

to the -dependent ground-state energy, while for fluorescence spectra we consider the Boltzmann 𝐹𝑜𝑟

distribution relevant to the -dependent energy of the fluorescent state. This procedure allows to 𝐹𝑜𝑟

quantitatively account for the (highly non-trivial) inhomogeneous broadening effects in linear and nonlinear 
spectral properties of DA dyes (see refs. 17, 18 of the main text). 

The model for aggregates of DA dyes

The Hamiltonian for an aggregate of DA dyes reads (see refs. 2, 13 in the main text):

       (4)
𝐻 =

𝑁

∑
𝑖 = 1

[2𝑧𝜌̂𝑖 ‒ 𝜏̂𝑖 + 𝜔𝑣 2𝜀𝑣𝑄𝑖 +
1
2(𝑃2

𝑖 + 𝜔𝑣𝑄2
𝑖)] + 𝑉

𝑁 ‒ 1

∑
𝑖

𝜌̂𝑖𝜌̂𝑖 + 1

where the first sum is the sum of the molecular Hamiltonians for the N dyes in the aggregate. The second 
sum accounts for the electrostatic interactions between nearest-neighbour dyes (V measures the 
interactions between two adjacent molecules in their zwitterionic state). The Hamiltonian matrix for the 
aggregate can be written on the basis obtained as the direct product of the non-adiabatic basis on each 
molecule, for a grand total of (2M)N states, a number that increases fast with N. To handle the problem of 
large aggregates we explore the possibility to account only for the in-phase combination of molecular 
modes:

        (5)
𝑄0 =

1
𝑁

𝑁

∑
𝑖 = 1

𝑄𝑖

With this approximation the aggregate Hamiltonian reduces to:

         (6)
𝐻𝑟𝑒𝑑𝑢𝑐𝑒𝑑 =

𝑁

∑
𝑖 = 1

[2𝑧𝜌̂𝑖 ‒ 𝜏̂𝑖 +
𝜔𝑣 2𝜀𝑣

𝑁
𝑄0 + ] + 𝑉

𝑁 ‒ 1

∑
𝑖

𝜌̂𝑖𝜌̂𝑖 + 1 +
1
2(𝑃2

0 + 𝜔𝑣𝑄2
0)



Where P0 is the linear momentum conjugated to Q0. Accounting for a single oscillator reduces the 
dimension of the basis to 2NM, making the non-adiabatic solution of the aggregate problem possible for 
aggregates up to N = 14. The approximation is expected to work well for delocalized excitons, as 
demonstrated by results in Fig. S1, where we compare linear absorption and HRS spectra calculated for a 
dimer described by the reduced Hamiltonian in Eq. 6 (black lines), with those obtained accounting for the 
full Hamiltonian in Eq. 4 (red lines). The agreement is very poor for V = -0.5 eV, but it improves upon 
increasing the absolute value of V. Specifically, for V = -1.35 (as relevant to the present work) the 
comparison between the two approaches suggests that the adopted approximation works well. We 
underline that the reduced vibrational model is expected to work better upon increasing the chain length, 
due to the more extended delocalization (ref. 23, main text).

Fig. S1. Linear absorption (top panels) and HRS spectra (bottom panels) calculated for a DANS linear dimer (molecular model 
parameters in Table 1, in the main paper) with V = -0.5, -1, -1.35, -1.5 eV from left to right. Red lines: results obtained with the 
complete Hamiltonian; Black lines: results obtained with the reduced Hamiltonian only accounting for the in-phase motion of all Qi 
coordinates; Blue dashed lines: results for the monomer (εor=0).

Fig. S2. Linear absorption (top panels) and HRS spectra (bottom panels) calculated for DANS linear aggregates of increasing 
dimension (N = 2, 4, 10, 12 and 14, from left to right), as reported on the figure labels. Black and red lines refer to a different 



number of phonon states (M, see legends). In the rightmost panels, the cyan dotted line shows results obtained for N = 14, M = 4. 
In all panels the blue dashed line refers to the monomer.

We are now in the position to address aggregates of increasing size, adopting the reduced Hamiltonian in 
Eq. 6. We expect that the effect of the coupling decreases with increasing the aggregate length; 
accordingly, to maintain the problem tractable for long chains, we progressively reduce the number of 
vibrational states included in the calculation, M. Results reported in Fig. S2 show that upon increasing the 
chain length from N = 2 to N = 12, M can be decreased from 10 to 4, without altering the quality of the 
calculated spectra. Moreover, results for N = 12 and 14 are superimposed, suggesting a delocalization 
length of about 12 molecular sites. Results in Fig. 5 (main text) correspond to the black curves in Fig. S2.

Aligning molecules with a zwitterionic ground state

As discussed in the main text, the ground state of DANS is dominated by the neutral D-π-A structure while 
the excited state is mainly zwitterionic (D+-π-A-). Accordingly, upon excitation the molecular dipole moment 
increases sharply, explaining the observed normal solvatochromism, i.e. the red-shift of the linear 
absorption and fluorescence spectra with increasing solvent polarity (refs. 3, 17, 18 in the main text). The 
opposite behaviour is observed for chromophores whose ground state is dominated by the zwitterionic 
structure: the decrease of the molecular dipole moment upon excitation leads in these dyes to a negative 
solvatochromism, i.e. a blue-shift of the absorption and emission bands in solvents of increasing polarity 
(refs. 3, 17, 18  in the main text). In ref. 18 (main text) we investigated and parameterized a well-known dye 
having an almost zwitterionic ground state, and in Fig. S3 we use the molecular model parameters as 
derived in Ref. 18 for that dye, and compare the behaviour of a monomer with an aligned dimer, assuming 
exactly the same V = -1.35 eV as adopted for DANS. Because of the attractive intermolecular interactions 
(V < 0), the ground state of this mainly zwitterionic dye is more stabilized than the excited state, leading to 
a largely blue-shifted absorption band with respect to the monomer, in line with the inverse 
solvatochromism. Moreover, the zwitterionic character of the dye further increases in the dimer because 
the attractive intermolecular interactions favour charge separation, leading to a huge reduction of the 
intensity of the linear absorption band of the aggregate (the intensity of the absorption band in fact 
vanishes in the two limits of a pure neutral and zwitterionic state, corresponding to a system with τ=0). The 
suppression of the β response is however much more pronounced, in line with early predictions about 
static NLO responses (ref. 13, main text).



Fig. S3. Linear absorption spectra (top panel) and HRS spectra (bottom panel) calculated for a molecule having an almost 
zwitterionic ground state (z = -0.25 eV, τ = 0.47 eV, ωv = 0.14 eV, εv = 0.17 eV, γ = 0.07 eV, μ0 = 40 D). Blue dashed lines: results for 
the monomer; Red and black lines: results for a dimer with V = -1.35 eV, obtained with the complete Hamiltonian (Eq. 4), and with 
the reduced Hamiltonian (Eq. 6), respectively.

Sum-over-states expressions for linear and nonlinear spectral properties

The linear absorption coefficient (M-1 cm-1 units) is calculated as:
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where  is the wavenumber (cm-1 units), NA the Avogadro number, c the light velocity, ε0 the vacuum 𝜈̃

dielectric constant;  is the width of the Gaussian bandshape assigned to each vibronic transition, related 

to the intrinsic linewidth as  = 2γ/2.354. Moreover,  and  are the transition dipole moment and 𝜇𝑔𝑛 𝜈̃𝑔𝑛

energy from the ground state (g) to the excited state (n) and the sum runs over all excited states.

The fluorescence spectrum is calculated as: 
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where f is the fluorescent state and the sum runs over all states with energy lower than the fluorescent 
state. 

In HRS measurement, a focused laser beam is shone on a solution and the intensity of the field generated 
at the second-harmonic frequency is recorded as a function of the frequency of the incoming light. The 

calibrated HRS signal , per dye molecule, is obtained with reference to the response of the pure solvent 𝑆𝐻𝑅𝑆
𝑐

as [Ref. 18 of main text]:



where  is the number density of the dye and of the solvent, respectively;  is the HRS 𝑁𝑑𝑦𝑒/𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑆 𝐻𝑅𝑆
𝑠𝑎𝑚𝑝𝑙𝑒/𝑠𝑜𝑙𝑣𝑒𝑛𝑡

signal measured for the sample and the solvent, respectively. The calibrated HRS signal  is related to 𝑆𝐻𝑅𝑆
𝑐

the  tensor, or better to the orientational average of its square. For linear molecules, a single component 𝛽

of the  tensor (arbitrarily set to the along the  direction) survives, so that: 𝛽 𝑧
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where the sums run over all excited states; ω is the laser frequency and , with  the Ω𝑚𝑔 =  𝜔𝑚𝑔 ‒  𝑖 𝛾𝑚𝑔 𝜔𝑚𝑔

transition frequencies from the ground state (g) to the excited state (m) and  the associated bandwidth. 𝛾𝑚𝑔

The dipole moment difference operator is defined as: .𝜇̅𝑧 = 𝜇𝑧 ‒ ⟨𝑔│𝜇𝑧│𝑔⟩

All the calculated  results are shown in the B* convention as defined by Willetts et al. (J. Chem. Phys. 97, 𝛽

1992, 7590).

The two-photon absorption cross section is calculated as (cgs units):
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