Supplementary Material for

What Mn $K_{\!\scriptscriptstyle\beta}$ Spectroscopy Reveals Concerning the Oxidation States of the Mn Cluster in Photosystem II

Simon Petrie, Rob Stranger* and Ron J. Pace*

Section S1: Model Compound Descriptions

Table S1: Model Mn compound data of Dau et al., [17], showing oxidation states, ligand environment and $K\beta_{1,3}$ <E> and E₀ values. Compounds 1-8 are mono or di- Metal (Mn₂ or Mn,Fe) Mn complexes (see [17], with representative structures given in Fig. **S1** below. Compounds 9-11 are Mn oxides (indicated), with O₆ ligation. Compound 12 is a tetra Mn complex, with mainly O ligation (see [17]). Most Mn co-ordination is sixfold, but compound 5 is penta co-ordinate.

Compound ^[a]	Ox.	Ligands	<e></e>	E ₀ ^[b]
	States(s)		eV	eV
1	(II) ₂	Mn ^{II} O ₂ N ₄	6491.49	6492.44
2	(III) ₂	Mn ^{III} O ₆	6490.86	6491.97
3	(111)	Mn [™] O₅N	6490.85	6492.03
4	(III) ₂	Mn ^{III} O ₄ N ₂	6490.96	6492.14
5	(111)	Mn ^{III} O ₃ N ₂	6490.82	6491.82
6	(IV)	Mn ^{∨I} O₄N₂	6490.33	6491.08
7	(IV)	Mn ^{vi} O ₃ N ₃	6490.33	6491.14
8	(IV) ₂	Mn ^{∨I} O₃N₃	6490.40	6491.06
9	(111)	Mn ^{III} ₂ O ₃	6490.97	6491.88
10	(IV)	Mn ^{∨I} O₂	6490.25	6491.26
11	(11)	Mn ^{II} O	6491.38	6492.34
12	(III-II) ₂	(Mn [∥] Mn ^Ⅲ)₂O ₉ Cl	6491.24	6492.34

[a] As listed by Dau [17]. [b] Estimated from Fig. S4 in [17].

Figure **S1:** Structures of representative examples of O-N ligated Mn Compounds of Dau et al., used for $K\beta_{1,3}$ calibration in [17] (from Fig. S2 in Dau et al.). Compound 5 is 5-co-ordinate. Compounds 3,7 are mixed metal. Colour coding is; Mn (violet), Fe (bright red), O red, N (blue), C (grey). Protons omitted

Table S2: Model Mn compound data of Yachandra et al et al., showing oxidation states, ligand environment and $K\beta_{1,3}$ <E> and E₀ values. Data from [12b] for oxo bridged dimeric complexes (compounds 1-5) and for oxo bridged trimeric and tetrameric species (compounds 6-9) [12d]. See Fig **S2** below

Compound ^[a]	Ox.	Ligands	<e></e>	E ₀ ^[b]
	States(s)		eV	eV
1	(III) ₂	MnO_2N_4	6490.39	6491.32
2	(III,IV)	MnO_2N_4	6490.18	6490.88
3	(IV) ₂	MnO_2N_4	6489.96	6490.44
4	(III,IV)	MnO_2N_4	6490.21	6491.12
5	(IV) ₂	MnO_2N_4	6490.01	6490.70
6	(11,111 ₂)	(Mn ^{III} O₅N)(Mn ^{II} O ₆)	6490.63	-
7	(III)₃	MnO₅N	6490.51	-
8	(, ₃)	MnO_4N_2	6490.54	-
9	(III) ₄	MnO_4N_2	6490.45	-

[a] Compounds 1-3 mono μ -oxo bridged. Compounds 4-5 di μ -oxo bridged. [b] Estimated from Fig. 8 in [12b].

MnO₂N₄Compounds (1-3)

Figure **S2** Structure schematics for O-N ligated Mn Compounds of Yachandra et al., used for $K\beta_{1,3}$ calibration in Figs 4,5 present text. (From Fig. 2 in [12b] and Fig. 2 in [12d]). Numbering as in Table **S2** above. Protons omitted

 Table S3: Model Mn compound data of Pushkar al et al. [12f], as for Tables S1,2 above.

Compound ^[a]	Ox.	Ligands	<e></e>	E ₀ ^[b]
	States(s)		eV	eV
1	(III,IV)	MnO_2N_4	6490.29	6491.19
2	(III,IV) ₂	MnO ₆	6490.42	-
3	(III-IV) ₂	MnO ₆	6490.43	-

[a] Compound 1 is equivalent to compound 4 in Table **S2**. Compounds 2,3 have tri μ -oxo bridging and tri phosphinate terminal ligation, see Fig **S3** below. [b] Estimated from Fig. 3 in [12f].

Figure **S3:** Structure schematics for O-N ligated Mn Compounds of Pushkar et al., used for $K\beta_{1,3}$ calibration in Figs 4,5 present text. (From Fig. 1 in [12f]). Numbering as in Table **S3** above. Protons omitted

Section S2: $K\beta'$ and Baseline Offset Effects

Fig. S4: Illustrates schematically the effects of the K β ' high energy wing intensity intrusion into the region of the K $\beta_{1,3}$ emission peak and baseline assignment position. The 'pure' K $\beta_{1,3}$ emission (black) is approximated as a simple Gaussian curve (Eo = 6491.5 eV, height A₀ = 1.7 units, half height width = 4.5 eV). The K β ' edge is approximated as a 'wedge' of height **h** at 6485 eV, tapering to zero at Eo. The 'true' baseline for these goes through 0 on the emission axis. The blue rectangle, height δ , represents the additional emission, included in the <E> integral determination (from 6485 to 6495 eV), from variation in assigned baseline. Red curve is the total for K β ' and K $\beta_{1,3}$ intensities. The 'true' <E> value is Eo, ie 649.50 eV.

The quantitative effects of the $K\beta'$ and baseline effects for the above illustrative example, are indicated below:

let $E_0 = (Eo - 6485) = 6.50 \text{ eV}$ here,

Then for the K β ' effect, the apparent shift ($\Delta < E_O >$) in the estimated <E> value is given by :

where $Area_g$ is the total area of the Gaussian curve up to the upper integration limit of 6495 eV. For the case above this is ~ 8. 0 units (varies somewhat with Eo position)

For the baseline effect, the corresponding $\Delta < E_O >$ value is given by :

If $h \sim 0.1$ and $\delta/A_0 \sim 0.1$, (see main text), then both equations 1) and 2) separately predict $\Delta < E_0$ > values of ~ 0.2 -0.3 eV, depending on the precise Eo position, actual Gaussian width etc. In both cases, the perturbations produce an apparent <E> value which is **Lower** that the 'true' E₀ value, ie correspond to an apparently *Higher* Mn oxidation state.

Section S3: Turnover Difference Baseline Levelling

Section S4: PS II RIXS Data of Yachandra et al. [13].

Fig **S6**: Reproduced Mn RIXS plots for the de-convoluted S states of PS II, with axis identifications as described in main text and refs [13]. Overlaid on the S_1 plot are the principal RIXS peak positions for Mn(II) (MnO) and Mn(IV) compounds from [13b], with mainly O ligation (see main text). The extended region overlaying the S_2 plot is for Mn₂O₃ (Mn(III), from [13a].