Electronic Structure and Absorption Spectra of Fluorescent Nucleoside Analogues

Danillo Valverde^{*1}, Adalberto Vasconcelos Sanches de Araujo², Antonio Carlos Borin^{†2} and Sylvio Canuto¹

 ¹Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 CP 66318, CEP 05508-090 São Paulo, SP, Brazil.
 ²Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, NAP-PhotoTech the USP Consortium for Photochemical Technology, Avenida Professor Lineu Prestes, 748, São Paulo, SP, CEP 05508-000, Brazil.

July 12, 2017

Supplemental Informations

Figure S1: Active space for ^{tz}C molecule with 3 orbitals *n* and 10 orbitals π containing 18 electrons calculated at SA(8)-CASSCF/cc-pVDZ level.

*dvalverd@if.usp.br

†ancborin@iq.usp.br

Figure S2: Active space for ^{tz}G molecule with 3 orbitals *n* and 10 orbitals π containing 18 electrons calculated at SA(6)-CASSCF/cc-pVDZ level.

Figure S3: Active space for ^{tz}I molecule with 3 orbitals *n* and 10 orbitals π containing 18 electrons calculated at SA(6)-CASSCF/cc-pVDZ level.

Figure S4: Active space for ^{tz}U molecule with 3 orbitals *n* and 10 orbitals π containing 18 electrons calculated at SA(10)-CASSCF/cc-pVDZ level.

ond angle	e in degree.													
	Coordinates	Gas	Г	Jioxane		Water		Coordinates	Gas	Д	ioxane		Water	
			PCM	ASEC-FEG	PCM	ASEC-FEG				PCM	ASEC-FEG	PCM	ASEC-FEG	
	N1-C2	1.371	1.370	1.369	1.369	1.370		N3-C4	1.386	1.385	1.385	1.385	1.392	
	C2-N3	1.329	1.329	1.330	1.330	1.333		C4-C5	1.422	1.421	1.421	1.420	1.422	
	C4-C5	1.430	1.430	1.431	1.430	1.431		C5-C6	1.483	1.481	1.483	1.477	1.475	
	C5–N7	1.360	1.360	1.360	1.360	1.360		C4-C9	1.396	1.396	1.400	1.397	1.399	
	C4-C9	1.412	1.412	1.411	1.412	1.409		C5–N7	1.348	1.349	1.350	1.351	1.355	
\mathbf{A}^{tz}	S8-C9	1.702	1.701	1.700	1.700	1.700	$\mathbf{n}_{\mathrm{z}_1}$	N7-S8	1.668	1.669	1.672	1.669	1.671	
	N7-S8	1.674	1.674	1.677	1.673	1.675		S8-C9	1.716	1.715	1.715	1.713	1.711	
	S8-C9-C4	108.4	108.3	108.3	108.3	108.3		S8-C9-C3	107.9	107.3	108.0	107.9	108.3	
	S8-N7-C5	106.1	106.2	106.2	106.3	106.6		C5-N7-S8	107.3	107.9	107.2	107.2	107.1	
	C2-N1-C6	117.1	117.2	117.4	117.3	117.7		C2-N1-C6	130.4	130.2	129.5	129.9	128.4	
	C2-N3-C4	112.6	112.6	112.4	112.7	112.2		C2-N3-C4	123.1	123.0	122.5	122.8	121.2	
	N1-C2	1.402	1.400	1.400	1.396	1.398		N3-C4	1.389	1.388	1.387	1.385	1.386	
	C4-C5	1.418	1.417	1.420	1.416	1.420		C4-C5	1.430	1.430	1.429	1.429	1.427	
	C5-C6	1.462	1.461	1.464	1.459	1.462		C5-C6	1.474	1.472	1.473	1.469	1.471	
	C5–N7	1.351	1.316	1.352	1.353	1.356		C4-C9	1.403	1.404	1.405	1.405	1.408	
	C4-C9	1.399	1.399	1.399	1.399	1.401		C5–N7	1.352	1.353	1.354	1.354	1.359	
^{tz} C	S8-C9	1.719	1.717	1.716	1.715	1.712	9_{z}	N7-S8	1.673	1.673	1.676	1.673	1.678	
	N7S8	1.673	1.672	1.674	1.671	1.671		S8-C9	1.708	1.707	1.707	1.706	1.704	
	S8-C9-C4	108.1	108.0	108.1	107.9	108.2		S8-C9-C4	108.6	108.6	108.7	108.7	108.8	
	S8-N7-C5	107.0	107.0	106.9	106.9	107.0		S8-N7-C5	106.6	106.6	106.6	106.7	106.7	
	C2-N1-C6	120.5	120.5	121.0	120.5	120.9		C2-N1-C6	126.1	126.1	125.5	126.0	124.6	
	C2-N3-C4	123.1	122.9	122.1	122.6	120.8		C2-N3-C4	113.7	113.8	114.0	114.0	114.3	
	N1-C2	1.379	1.379	1.378	1.379	1.381		S8-C9	1.705	1.705	1.705	1.705	1.701	
	C2-N3	1.304	1.304	1.305	1.304	1.308		C4-C9	1.403	1.403	1.404	1.403	1.405	
	N3-C4	1.393	1.393	1.392	1.393	1.392		C2-N3-C4	113.1	113.1	113.1	113.1	113.2	
Izı	C4-C5	1.431	1.431	1.431	1.431	1.432	\mathbf{I}_{Z1}	C6-N1-C2	126.0	126.1	126.0	126.1	125.7	
	C5–N7	1.351	1.351	1.352	1.351	1.355		S8-C9-C4	108.4	108.4	108.2	108.4	108.1	
	N1-H	1.019	1.019	1.020	1.019	1.021		S8-N7-C5	106.7	106.7	106.6	106.7	106.6	
	N7-S8	1.674	1.674	1.676	1.674	1.675								

Table S1: Optimized geometric parameter of the new emissive RNA alphabet in gas phase, dioxane and water at MP2/cc-pVDZ level. The bond distance in Å and bond angle in degree.

Ν	0.4314	-0.6851	-1.8233
Ν	0.6591	1.4459	-0.6563
С	0.0826	1.3570	1.7595
Ν	-0.4655	-1.1118	1.7221
Ν	-0.2629	-2.6421	-0.7969
С	0.7262	0.6416	-1.7159
С	0.2411	0.7910	0.4793
С	-0.0826	-0.6018	0.5207
С	0.0340	-1.3350	-0.7171
S	-0.4202	0.1395	2.8328
Н	0.2475	2.3814	2.0930
Н	-0.5059	-3.1997	0.0320
Н	-0.1064	-3.0915	-1.6930
Н	1.0273	1.1051	-2.6619
0	3.0722	-0.5629	0.0403
Н	2.9367	0.3812	-0.1185
Н	2.9487	-0.9207	-0.8490
0	-1.6158	2.4791	-2.4407
Н	-2.2411	1.9775	-1.9006
Н	-0.8605	2.5631	-1.8358
0	-0.0579	2.5863	4.5094
Н	0.6891	2.5014	5.1164
Н	-0.7634	2.9023	5.0886
0	-0.5614	0.6127	-4.5092
Н	-0.9911	1.2615	-3.9270
Н	-0.4201	-0.1282	-3.9033
0	-0.9936	-3.9134	1.6645
Н	-0.7874	-3.0130	1.9886
Н	-1.9601	-3.9219	1.7016

Table S2: Cartesian coordinates for ^{tz}A with 5 water molecules optimized at MP2/cc-pVDZ level (in Angstroms).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
			tz	V	tz	c	tz,	IJ	tz	U	tz	L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		N° of HB	DIP	FEG	DIP	FEG	DIP	FEG	DIP	FEG	DIP	FEG
io 1 32.7 314 4.0 4.6 11.7 9.0 6.4 5.9 3.2 29 io 2 63.0 64.1 37.8 38.4 42.7 37.5 89.8 90.8 $ -$ 4 $ 1.5$ 1.7 1.1 0.7 0.1 $ -$ (HB) 1.61 1.63 2.55 2.54 2.35 2.45 1.97 1.97 0.03 0.03 2 $ -$		0	3.7	3.5	Ι	Ι	Ι	Ι	0.1	0.1	96.8	97.1
io 2 63.0 64.1 37.8 38.4 42.7 37.5 89.8 90.8 $ -$ 1.5 1.7 1.1 0.7 0.1 $ -$		1	32.7	31.4	4.0	4.6	11.7	9.0	6.4	5.9	3.2	2.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	io	2	63.0	64.1	37.8	38.4	42.7	37.5	89.8	90.8		
4 - - 1.5 1.7 1.1 0.7 0.1 - 10.3 0.03		3	0.6	1.0	56.6	55.2	44.4	52.8	3.7	3.1		
(HB) 1.61 1.63 2.55 2.54 2.35 2.45 1.97 1.97 0.03 0.03 0.03 2 - - - - - - 3.3 2.3 2.3 2.3 2.3 2.3 0.0		4			1.5	1.7	1.1	0.7	0.1			
2 - - - - - 3.3 2.3 3 1.4 0.3 - - - - 19.7 15.6 4 9.6 3.8 0.4 - 0.1 - 19.7 15.6 5 29.4 21.8 3.2 0.5 1.6 0.4 9.0 5.0 27.3 29.9 6 34.7 39.5 16.3 4.7 8.4 4.0 31.7 24.3 7.2 9.8 6 34.7 39.5 16.3 4.7 8.4 4.0 31.7 24.3 7.2 9.8 7 19.5 26.1 35.6 27.9 23.7 18.0 37.1 39.7 1.1 1.8 8 4.5 7.5 30.1 41.3 32.2 36.0 17.0 23.5 0.1 0.2 9 0.8 0.9 11.9 21.2 23.9 29.5 3.6 6.2 - - - 1.1 1.8 10 0.1 0.1		$\langle \mathrm{HB} \rangle$	1.61	1.63	2.55	2.54	2.35	2.45	1.97	1.97	0.03	0.03
2 - - - - - 33 23 23 3 1.4 0.3 - - - - - 33 23 4 9.6 3.8 0.4 - 0.1 - 19.7 15.6 5 29.4 21.8 3.2 0.5 1.6 0.4 9.0 5.0 27.3 29.9 6 34.7 39.5 16.3 4.7 8.4 4.0 31.7 24.3 7.2 9.8 6 34.7 39.5 16.3 4.7 8.4 4.0 31.7 24.3 7.2 9.8 9 0.8 0.9 11.9 21.2 23.7 18.0 37.1 39.7 1.1 1.8 9 0.8 0.9 11.9 21.2 23.9 29.5 0.1 0.2 0.1 0.2 1.1 1.8 10 0.1 0.1 21.2 23.9 29.5 3.6 6.2 -1 -1 -1 1.8 11 -<												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2			Ι	I				I	3.3	2.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1.4	0.3	I	I	I	I	0.1	I	19.7	15.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4	9.6	3.8	0.4	Ι	0.1	Ι	1.2	0.5	41.3	40.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5	29.4	21.8	3.2	0.5	1.6	0.4	9.0	5.0	27.3	29.9
at 7 19.5 26.1 35.6 27.9 23.7 18.0 37.1 39.7 1.1 1.8 8 4.5 7.5 30.1 41.3 32.2 36.0 17.0 23.5 0.1 0.2 9 0.8 0.9 11.9 21.2 23.9 29.5 3.6 6.2 10 0.1 0.1 21.2 23.9 29.5 3.6 6.2 <		9	34.7	39.5	16.3	4.7	8.4	4.0	31.7	24.3	7.2	9.8
at 8 4.5 7.5 30.1 41.3 32.2 36.0 17.0 23.5 0.1 0.2 9 0.8 0.9 11.9 21.2 23.9 29.5 3.6 6.2 10 0.1 0.1 21.2 23.9 29.5 3.6 6.2 <	^r ot	L	19.5	26.1	35.6	27.9	23.7	18.0	37.1	39.7	1.1	1.8
9 0.8 0.9 11.9 21.2 23.9 29.5 3.6 6.2 10 0.1 0.1 2.2 3.9 8.5 10.2 0.4 0.7 11 0.2 0.4 1.5 1.7 12 0.1 0.2 0.4 0.7 (HB) 5.78 6.14 7.37 7.91 7.98 8.26 6.72 7.02 4.19 4.35	đ	8	4.5	7.5	30.1	41.3	32.2	36.0	17.0	23.5	0.1	0.2
10 0.1 0.1 2.2 3.9 8.5 10.2 0.4 0.7 - - 11 - - 0.2 0.4 1.5 1.7 - - - 12 - - 0.1 0.2 0.1 0.2 - - - - (HB) 5.78 6.14 7.37 7.91 7.98 8.26 6.72 7.02 4.19 4.35		6	0.8	0.9	11.9	21.2	23.9	29.5	3.6	6.2		
11 - - 0.2 0.4 1.5 1.7 -		10	0.1	0.1	2.2	3.9	8.5	10.2	0.4	0.7		
12 — — — — 0.1 0.2 – – — — — — — — — — — — — — — — — — —		11			0.2	0.4	1.5	1.7				
(HB) 5.78 6.14 7.37 7.91 7.98 8.26 6.72 7.02 4.19 4.35		12					0.1	0.2	Ι	Ι		
		$\langle HB \rangle$	5.78	6.14	7.37	7.91	7.98	8.26	6.72	7.02	4.19	4.35

Table S3: Comparison between ASEC-DIP and ASEC-FEG approaches to statistic of the hydrogen bonds occurring in 1,4-dioxane and water for the modified RNA nucleobases.

6

Molecule		Dio	xane	W	ater
		ASEC-DIP	ASEC-FEG	ASEC-DIP	ASEC-FEG
	N10-H11O	0.69	0.71	0.86	0.98
	N10-H12···O	0.92	0.91	1.00	1.00
	$N10 \cdots H - O$	_	_	0.10	0.02
^{tz}A	$N1 \cdots H - O$	_	_	1.48	1.69
	$N3 \cdots H - O$	_	—	1.77	1.88
	$N7 \cdots H - O$	_	—	0.56	0.54
	S8····H−O	—	—	0.02	0.02
	N10-H11O	0.66	0.63	0.83	0.91
	N10-H12···O	0.92	0.94	0.91	0.97
	$N3-H\cdots O$	0.98	0.97	1.02	1.01
	$N10 \cdots H - O$	_	_	0.06	0.02
^{tz}C	$N1 \cdots H - O$	_	_	1.74	1.98
	$N3 \cdots H - O$	—	_	0.08	0.11
	$N7 \cdots H - O$	_	_	0.48	0.46
	$S8 \cdots H - O$	—	_	0.02	0.03
	011····H–0	—		2.25	2.43
	N11-H12···O	0.61	0.67	0.97	0.97
	N11-H13···O	0.77	0.81	0.86	0.95
	N1 $-H$ ···O	0.97	0.97	1.01	1.01
	N11····H–O	_	_	0.24	0.12
$^{tz}\mathbf{G}$	$N1 \cdots H - O$	—	_	0.02	0.01
	$N3 \cdots H - O$	_	_	1.61	1.72
	$N7 \cdots H - O$	—	_	0.72	0.80
	$S8 \cdots H - O$	_	_	0.28	0.33
	011····H–0	—	—	2.28	2.27
	N1 $-H$ ···O	0.98	0.98	0.97	1.01
	$N3-H\cdots O$	0.99	1.02	1.04	1.02
	$N1 \cdots H - O$	_	—	0.03	0.04
$^{tz}\mathbf{U}$	$N3 \cdots H - O$	_	_	0.04	0.04
	$N7 \cdots H - O$	_	—	0.65	0.56
	$S8{\cdots}H{-}O$	_	—	0.14	0.16
	$O10 \cdots H - O$	—	—	1.93	2.07
	011····H–0	—	_	1.94	2.12
	$N1 - H \cdots O$	0.03	0.03	0.12	0.13
	$N1 \cdots H - O$	_	—	0.00	0.00
	$N3 \cdots H - O$	_	—	1.15	1.10
$^{tz}\mathbf{I}$	$N7 \cdots H - O$	_	_	0.65	0.67
	S8····H−O	_	—	0.17	0.20
	$O10 \cdots H - O$	_	_	2.10	2.25

 Table S4: Average number of hydrogen bonds in each site that makes HB for the new emissive RNA alphabet.

					1,4-d	ioxane					W	ater		
	Gas-	Phase	ASE	C-DIP	ASE	C-FEG	C-l	РСМ	ASE	C-DIP	ASE	C-FEG	C-I	РСМ
	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f
$2^1(n\pi^*)$	3.62	0.002	3.70	0.003	3.71	0.003	3.71	0.002	3.97	0.108	3.77	0.142	3.83	0.054
$3^1(\pi\pi^*)$	4.00	0.115	4.00	0.081	3.96	0.084	4.01	0.079	4.10	0.025	4.22	0.086	3.86	0.034
$4^{1}(n\pi^{*})$	4.05	0.074	4.02	0.124	4.04	0.121	4.03	0.121	4.14	0.142	4.28	0.048	4.07	0.129
$5^1(\pi\pi^*)$	5.11	0.011	5.19	0.012	5.16	0.012	5.18	0.012	5.14	0.027	5.15	0.039	5.26	0.012
$6^1(\pi\pi^*)$	5.32	0.088	5.28	0.080	5.27	0.082	5.30	0.083	5.21	0.015	5.18	0.013	5.28	0.074

Table S5: The six low-lying transitions energies (eV) with their respective oscillator strength (f) obtained at SA(6)-CASPT2(18,13) level for ^{tz}A molecule (between parenthesis is reported the nature of the state).

Table S6: The eight low-lying transitions energies (eV) with their respective oscillator strength (f) obtained at SA(8)-CASPT2(18,13) level for ^{tz}C molecule (between parenthesis is reported the nature of the state).

					1,4-d	ioxane					W	ater		
	Gas-	Phase	ASE	C-DIP	ASE	C-FEG	C-l	РСМ	ASE	C-DIP	ASE	C-FEG	C-I	РСМ
	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f
$2^1(\pi\pi^*)$	3.63	0.231	3.66	0.243	3.64	0.231	3.49	0.199	3.75	0.239	3.80	0.236	3.70	0.233
$3^1(n\pi^*)$	4.25	0.000	4.38	0.001	4.37	0.001	4.45	0.000	4.87	0.118	4.54	0.245	4.43	0.159
$4^{1}(n\pi^{*})$	4.45	0.001	4.45	0.127	4.40	0.126	4.57	0.001	4.87	0.157	5.09	0.198	4.66	0.000
$5^1(\pi\pi^*)$	4.47	0.100	4.65	0.001	4.53	0.001	4.71	0.098	5.05	0.007	5.11	0.021	4.80	0.000
$6^1(\pi\pi^*)$	5.15	0.243	5.15	0.269	5.16	0.258	5.13	0.137	5.05	0.204	5.24	0.010	5.16	0.262
$7^1(\pi\pi^*)$	5.36	0.045	5.46	0.009	5.39	0.020	5.54	0.003	5.56	0.004	5.33	0.004	5.60	0.005
$8^1(n\pi^*)$	5.65	0.012	5.62	0.013	5.64	0.012	5.61	0.012	5.73	0.090	5.56	0.004	5.60	0.013

Table S7: The six low-lying transitions energies (eV) with their respective oscillator strength (f) obtained at SA(6)-CASPT2(18,13) level for tz G molecule (between parenthesis is reported the nature of the state).

					1,4-d	ioxane					W	ater		
	Gas-	Phase	ASE	C-DIP	ASE	C-FEG	C-l	РСМ	ASE	C-DIP	ASE	C-FEG	C-I	PCM
	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f
$2^1(\pi\pi^*)$	3.87	0.095	3.76	0.116	3.76	0.116	3.82	0.113	3.73	0.130	3.63	0.125	3.75	0.121
$3^1(n\pi^*)$	4.45	0.017	4.61	0.001	4.60	0.000	4.64	0.001	4.69	0.048	4.61	0.054	4.70	0.001
$4^1(\pi\pi^*)$	4.65	0.111	4.69	0.083	4.68	0.085	4.69	0.093	4.88	0.001	4.80	0.001	4.76	0.070
$5^{1}(n\pi^{*})$	5.06	0.007	5.05	0.006	5.04	0.006	5.08	0.007	5.25	0.006	5.19	0.006	5.11	0.006
$6^{1}(\pi\pi^{*})$	5.31	0.214	5.30	0.269	5.30	0.280	5.33	0.259	5.29	0.408	5.22	0.356	5.35	0.315

					1,4-d	ioxane					W	ater		
	Gas-	Phase	ASE	C-DIP	ASE	C-FEG	C-I	РСМ	ASE	C-DIP	ASE	C-FEG	C-I	PCM
	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f
$2^1(\pi\pi^*)$	4.09	0.165	4.00	0.163	3.99	0.162	4.10	0.152	3.92	0.174	3.92	0.170	3.98	0.169
$3^1(n\pi^*)$	4.48	0.001	4.56	0.001	4.53	0.000	4.56	0.001	4.88	0.001	4.78	0.000	4.65	0.001
$4^{1}(n\pi^{*})$	5.46	0.011	5.28	0.147	5.35	0.131	5.43	0.121	5.13	0.206	5.10	0.202	5.38	0.159
$5^1(\pi\pi^*)$	5.48	0.172	5.38	0.077	5.37	0.096	5.49	0.123	5.50	0.202	5.49	0.198	5.57	0.010
$6^1(\pi\pi^*)$	5.58	0.064	5.54	0.010	5.53	0.010	5.52	0.011	5.61	0.066	5.55	0.060	5.62	0.113
$7^{1}(n\pi^{*})$	6.06	0.000	5.60	0.212	5.64	0.200	6.13	0.000	5.65	0.010	5.63	0.010	6.23	0.000
$8^1(\pi\pi^*)$	6.30	0.228	6.06	0.001	6.03	0.000	6.26	0.256	6.30	0.259	6.17	0.001	6.32	0.213
$9^{1}(n\pi^{*})$	6.45	0.000	6.31	0.266	6.28	0.257	6.66	0.000	6.31	0.000	6.23	0.268	6.68	0.000
$10^{1}(n\pi^{*})$	6.63	0.000	6.63	0.000	6.60	0.000	7.70	0.015	7.11	0.000	7.01	0.000	6.94	0.000

Table S8: The ten low-lying transitions energies (eV) with their respective oscillator strength (f) obtained at SA(10)-CASPT2(18,13) level for ^{tz}U molecule (between parenthesis is reported the nature of the state).

Table S9: The six low-lying transitions energies (eV) with their respective oscillator strength (f) obtained at SA(6)-CASPT2(18,13) level for ^{tz}I molecule (between parenthesis is reported the nature of the state).

					1,4-d	ioxane					W	ater		
	Gas-	Phase	ASE	C-DIP	ASE	C-FEG	C-I	РСМ	ASE	C-DIP	ASE	C-FEG	C-I	PCM
	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f	ΔE	f
$2^1(\pi\pi^*)$	4.03	0.104	4.01	0.109	3.99	0.108	4.01	0.109	3.73	0.130	3.63	0.125	4.01	0.109
$3^1(n\pi^*)$	4.54	0.001	4.58	0.119	4.57	0.125	4.57	0.124	4.69	0.048	4.61	0.054	4.55	0.000
$4^1(\pi\pi^*)$	4.55	0.136	4.62	0.001	4.58	0.001	4.58	0.000	4.88	0.001	4.80	0.001	4.57	0.127
$5^1(n\pi^*)$	4.95	0.005	4.99	0.005	4.98	0.005	4.98	0.005	5.25	0.006	5.19	0.006	4.96	0.005
$6^1(\pi\pi^*)$	5.44	0.050	5.44	0.067	5.45	0.056	5.44	0.059	5.29	0.408	5.22	0.356	5.42	0.055

Atom	Gas		Dioxane	2		Water	
	Cub	PCM	ASEC-DIP	ASEC-FEG	PCM	ASEC-DIP	ASEC-FEG
N1	-0.67	-0.69	-0.70	-0.70	-0.72	-0,84	-0.88
C2	0.57	0.58	0.58	0.57	0.59	0,69	0.69
N3	-0.67	-0.69	-0.70	-0.69	-0.71	-0,86	-0.87
C4	0.45	0.46	0.45	0.44	0.46	0,53	0.54
C5	-0.02	-0.03	-0.01	-0.02	-0.03	-0,06	-0.08
C6	0.58	0.60	0.60	0.61	0.62	0,71	0.77
N7	-0.35	-0.36	-0.37	-0.37	-0.38	-0,38	-0.39
S 8	0.21	0.23	0.23	0.22	0.26	0,28	0.28
C9	-0.29	-0.29	-0.28	-0.28	-0.29	-0,31	-0.33
N10	-0.67	-0.69	-0.71	-0.72	-0.72	-0,77	-0.80
H11	0.30	0.31	0.33	0.34	0.34	0,37	0.41
H12	0.34	0.36	0.38	0.38	0.38	0,42	0.45
H13	0.20	0.21	0.21	0.21	0.22	0,22	0.22
H14	0.01	0.01	0.00	0.00	0.01	0,00	0.00

Table S10: Charge distribution (e) for ^{tz}A base in gas phase, dioxane and water obtained at MP2/cc-pVDZ level.

Table S11: Charge distribution (e) for ${}^{tz}C$ base in gas phase, dioxane and water obtained at MP2/cc-pVDZ level.

Atom	Gas		Dioxane	2			Water	
		PCM	ASEC-DIP	ASEC-FEG	P	СМ	ASEC-DIP	ASEC-FEG
N1	-0.70	-0.74	-0.75	-0.75	-0	.79	-0.86	-0.92
C2	0.92	0.94	0.94	0.93	0	.95	1.03	1.06
N3	-0.73	-0.74	-0.75	-0.74	-0	.74	-0.78	-0.79
C4	0.36	0.36	0.36	0.36	0	.36	0.38	0.40
C5	0.05	0.04	0.04	0.03	0	.03	0.02	0.00
C6	0.57	0.59	0.60	0.62	0	.63	0.68	0.72
N7	-0.35	-0.36	-0.37	-0.37	-0	.38	-0.39	-0.39
S 8	0.20	0.22	0.20	0.19	0	.24	0.24	0.26
C9	-0.34	-0.33	-0.32	-0.32	-0	.32	-0.31	-0.31
N10	-0.69	-0.70	-0.73	-0.74	-0	.72	-0.76	-0.77
011	-0.56	-0.59	-0.60	-0.61	-0	.63	-0.71	-0.75
H12	0.31	0.32	0.34	0.35	0	.34	0.36	0.37
H13	0.36	0.37	0.40	0.41	0	.39	0.42	0.42
H14	0.38	0.39	0.41	0.41	0	.40	0.44	0.46
H15	0.21	0.22	0.22	0.22	0	.23	0.23	0.23

Atom	Gas		Dioxane	2		Water	
		PCM	ASEC-DIP	ASEC-FEG	PCM	ASEC-DIP	ASEC-FEG
N1	-0.67	-0.67	-0.67	-0.69	-0.67	-0.71	-0.71
C2	0.74	0.75	0.76	0.77	0.78	0.85	0.84
N3	-0.66	-0.67	-0.69	-0.69	-0.70	-0.81	-0.82
C4	0.37	0.37	0.35	0.36	0.36	0.40	0.40
C5	0.01	0.02	0.02	0.03	0.02	0.01	0.02
C6	0.62	0.63	0.63	0.63	0.63	0.71	0.70
N7	-0.34	-0.37	-0.38	-0.38	-0.41	-0.44	-0.45
S 8	0.20	0.22	0.21	0.22	0.24	0.25	0.26
C9	-0.28	-0.28	-0.27	-0.28	-0.27	-0.26	-0.27
O10	-0.47	-0.50	-0.52	-0.52	-0.53	-0.63	-0.64
N11	-0.74	-0.76	-0.77	-0.79	-0.79	-0.85	-0.81
H12	0.31	0.33	0.36	0.36	0.36	0.41	0.40
H13	0.34	0.35	0.36	0.36	0.36	0.40	0.40
H14	0.38	0.39	0.41	0.42	0.41	0.46	0.47
H15	0.20	0.20	0.20	0.20	0.21	0.21	0.21

Table S12: Charge distribution (e) for tz **G** base in gas phase, dioxane and water obtained at MP2/cc-pVDZ level.

Table S13: Charge distribution (e) for ^{tz}U base in gas phase, dioxane and water obtained at MP2/cc-pVDZ level.

Atom	Gas	Dioxane			Water			
		PCM	ASEC-DIP	ASEC-FEG	PCM	ASEC-DIP	ASEC-FEG	
N1	-0.60	-0.60	-0.61	-0.62	-0.60	-0.65	-0.66	
C2	0.73	0.74	0.76	0.76	0.76	0.84	0.84	
N3	-0.61	-0.61	-0.63	-0.62	-0.61	-0.65	-0.65	
C4	0.30	0.30	0.31	0.31	0.30	0.32	0.32	
C5	0.09	0.09	0.09	0.09	0.09	0.08	0.07	
C6	0.58	0.59	0.60	0.60	0.60	0.66	0.67	
N7	-0.35	-0.37	-0.39	-0.39	-0.42	-0.45	-0.44	
S 8	0.24	0.25	0.24	0.24	0.26	0.29	0.29	
C9	-0.35	-0.34	-0.34	-0.34	-0.32	-0.30	-0.30	
O10	-0.45	-0.47	-0.49	-0.49	-0.51	-0.58	-0.60	
011	-0.52	-0.54	-0.55	-0.56	-0.56	-0.65	-0.66	
H12	0.34	0.35	0.38	0.38	0.36	0.41	0.43	
H13	0.37	0.38	0.40	0.40	0.39	0.44	0.46	
H14	0.22	0.23	0.23	0.23	0.24	0.24	0.24	

Atom	Gas	Dioxane			Water			
		PCM	ASEC-DIP	ASEC-FEG	PCM	ASEC-DIP	ASEC-FEG	
N1	-0.61	-0.61	-0.61	-0.60	-0.60	-0.63	-0.60	
C2	0.44	0.45	0.46	0.45	0.47	0.52	0.51	
N3	-0.62	-0.64	-0.65	-0.65	-0.66	-0.72	-0.71	
C4	0.45	0.45	0.46	0.46	0.46	0.49	0.49	
C5	-0.02	-0.02	-0.02	-0.01	-0.01	-0.03	0.00	
C6	0.65	0.65	0.65	0.65	0.66	0.73	0.70	
N7	-0.33	-0.36	-0.37	-0.36	-0.40	-0.43	-0.44	
S 8	0.22	0.24	0.24	0.23	0.26	0.29	0.30	
C9	-0.31	-0.31	-0.32	-0.32	-0.30	-0.31	-0.31	
O10	-0.48	-0.50	-0.50	-0.51	-0.54	-0.61	-0.63	
H11	0.35	0.36	0.36	0.36	0.38	0.38	0.38	
H12	0.21	0.21	0.23	0.23	0.22	0.24	0.25	
H13	0.06	0.06	0.06	0.06	0.07	0.07	0.07	

Table S14: Charge distribution (e) for ^{tz}I base in gas phase, dioxane and water obtained at MP2/cc-pVDZ level.