Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting information

Metallic borophene polytypes as lightweight anode materials for

non-lithium-ion batteries

Pan Xiang¹, Xianfei Chen^{1,2*}, Wentao Zhang¹, Junfeng Li¹, Beibei Xiao³, Longshan Li², Kuisen Deng¹

¹College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

²Postdoctoral Innovation Practice Base, Sichuan Konkasnow New Material Co.,Ltd, Yaan 625400, China

³School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China

^{*} Corresponding author. Email: <u>chenxianfei2014@cdut.edu.cn</u>

Table S1. The calculated E_{ad} values for all considered adsorption configurations. The arrows indicate that metal ions diffuse to their most energetic sites spontaneously after full geometry optimization. Green marked areas represent the most energetic configurations and the corresponding E_{ad} .

		Al	Ca	K	Na	Mg
	В	→H				
	1	1	→H1	→H1	→H1	→H1
	В	1.25	-	-	-	
	2	7	0.155	1.155	0.479	1.305
	В	→B				
~	3	3	→H1	→H1	→B3	→H1
	Т	1.25	-	-	-	-
S	l T	2	0.183	1.124	0.458	0.326
I	1	→H 1	111	111	111	111
	2 T	l . II	→HI	→HI	→HI	→HI
	1	→Π 1	J U1	J 11	J U1	J U1
	у Н	0 14	-	-	-	→111
	1	2	1 165	1 445	1 009	0 326
	Н	∠ →H	1.105	1.110	1.009	0.520
	2	1	→H1	→H1	→H1	→H1
	В	1.30		-	-	
	1	1	→H1	1.221	0.640	0.902
	В	→H		-	-	
	2	1	\rightarrow H1	1.294	0.641	→H1
	В	→H				
	3	1	→H1	→H1	→H1	→H1
	В	→H				
	4	1	→H1	→H1	→H1	→H1
	Т	→H				
a	1	1	→H1	→H1	→H1	→H1
8	1	→H 1	111	111	111	TT1
2	2 T	1	→HI	→HI	→HI	→HI
	1	$\rightarrow \Pi$	<u></u> 1	<u></u> 1	<u></u> 1	H1
	у Н	0.68				
	1	8	0 901	1 426	0.872	0.099
	Н	→H	0.901	1.120	0.072	0.077
	2	1	→H1	→H1	→H1	→H1
	Н	→T				
	3	2	→H1	→H1	→H1	→H1
	Н	→Н				
	4	1	→H1	→H1	→H1	\rightarrow H1
S	В	1.11	→B2	-	-	0.457

	1	9		1.698	1.058	
	В	0.91	-	-	-	-
	2	8	1.599	1.882	1.268	0.114
	Т	1.12		-	-	
	1	4	→B2	1.699	1.060	→B2
3	Т	0.88	-	-	-	-
	2	9	1.527	1.879	1.270	0.099
	Η	→B				
	1	2	→B2	→B2	→B2	→B2
	Η	→T				
	2	2	→T2	→T2	→T2	→T2

		1Layer	2Layer	3Layer	4Layer	5Layer
S1	Ca	-0.475	-0.216	0.048	-	-
	K	-0.373	-0.027	0.017	-	-
	Na	-0.322	0.055	-	-	-
S2	Ca	-0.522	0.097	-	-	-
	K	-0.206	0.045	-	-	-
	Na	-0.151	-0.071	-0.037	-0.005	0.006
S3	Ca	-0.269	0.085	-	-	-
	Na	-0.191	0.020	-	-	-

Table S2. E_{ad} values for metal ions multilayer adsorption on borophene.

Figure S1. Top and side view of the most energy favorable adsorption configurations of Na, K, Mg, Ca and Al on S1, S2 and S3, respectively.

Figure S2. Slice of the charge density difference for Na diffusing on three types of borophene. The results of both Path I and Path II are presented, where IS and TS represent the initial states and transition states, respectively. Red and blue areas represent the accumulation and depletion of electrons.

Figure S3. Partial density of states (PDOS) of S2 (a-c) and S3 (d-e) with single layer of Na, K and Ca ions adsorbed. The Fermi levels are set to zero and are indicated by the dashed lines.

Figure S4. Top and side views of the optimized structures and band structures of Na-metalized $S1(2\times2)$ (a) and $S2(1\times2)$ (b). The Dirac cones are highlighted by dashed circles.