Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

# *Ab initio* molecular dynamics of thiophene: The interplay of internal conversion and intersystem crossing (Electronic Supplementary Information)

Thomas Schnappinger<sup>*a*</sup>, Patrick Kölle<sup>*a*</sup>, Marco Marazzi<sup>*b,c*</sup>, Antonio Monari<sup>*b,c*</sup>, Leticia, González<sup>*d*</sup> and Regina de Vivie-Riedle<sup>*a*\*</sup>

 <sup>a</sup> Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany. E-mail: Regina.de\_Vivie-Riedle@cup.uni-muenchen.de
<sup>b</sup> Université de Lorraine-Nancy, TMS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-Lès-Nancy, France.
<sup>c</sup> CNRS, TMS, SRSMC, Boulevard des Aiguillettes, 54506 Vandoeuvre-Lès-Nancy, France.
<sup>d</sup> Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17,

" Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Wahringer Straße T 1090 Vienna, Austria.

# Contents

| 1 | Quantum chemical calculations of thiophene CAS(8/7)  | 2 |
|---|------------------------------------------------------|---|
| 2 | Quantum chemical calculations of thiophene CAS(10/9) | 3 |
| 3 | Excited state dynamics of thiophene                  | 4 |
| 4 | Optimized geometries of thiophene                    | 7 |

# 1 Quantum chemical calculations of thiophene CAS(8/7)



Fig. S1 State-averaged CASSCF molecular orbitals included in the active space CAS(8/7) of thiophene, obtained with the 6-31G\* basis set at the SA(2S+3T)-CASSCF optimized ground state equilibrium geometry.

| Table S1 Calcu    | culated excitation energies (eV) for singlet and triplet states of thiophene at the most relevant gec | ometries. Shown are the                |
|-------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------|
| CAS(8/7)/6-31G    | 1G* values of this work and results from previous calculations (references) 1-3 and from CAS(8/7)/    | /6-31G* calculations of this work. All |
| energies are rela | relative to the ground state minimum energy. The energies of the optimized states are given in bol    | ld.                                    |

|                                        | CASSCI         | CASSCF(8/7)/6-31G*    |      |      |                | references                      |                                 |                          |                          |                          |
|----------------------------------------|----------------|-----------------------|------|------|----------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|
| Structure                              | S <sub>0</sub> | <b>S</b> <sub>1</sub> | T1   | T2   | T <sub>3</sub> | S <sub>0</sub>                  | <b>S</b> <sub>1</sub>           | T1                       | T <sub>2</sub>           | T <sub>3</sub>           |
| S <sub>0</sub> -Min                    | 0.00           | 6.19                  | 3.72 | 5.05 | 6.52           | <b>0.00</b> <sup>a</sup>        | 5.58 <sup>a</sup>               | 3.76 <sup>a</sup>        | 4.75 <sup>a</sup>        | 6.11 <sup>a</sup>        |
| S <sub>1</sub> -Min-a                  | 0.82           | 5.40                  | 3.23 | 4.86 | 6.42           | 1.49 <sup><i>a</i></sup>        | <b>5.08</b> <sup>a</sup>        | 4.04 <sup><i>a</i></sup> | 4.55 <sup><i>a</i></sup> | 6.09 <sup><i>a</i></sup> |
| S <sub>1</sub> -TS                     | 1.06           | 5.55                  | 3.65 | 5.05 | 5.79           | $1.64^{a}$                      | <b>5.15</b> <sup><i>a</i></sup> | $3.81^{a}$               | 4.65 <sup><i>a</i></sup> | 5.47 <sup>a</sup>        |
| S <sub>1</sub> -Min-b                  | 3.21           | 3.38                  | 3.15 | 3.56 | 5.53           | $3.55^{a}$                      | <b>4.00</b> <sup><i>a</i></sup> | 3.64 <sup><i>a</i></sup> | 4.29 <sup><i>a</i></sup> | 5.69 <sup>a</sup>        |
| S <sub>1</sub> /S <sub>0</sub> -CoIn-a | 3.57           | 3.57                  | 3.44 | 3.87 | 6.26           | <b>4.03</b> <sup><i>a</i></sup> | <b>4.08</b> <sup>a</sup>        | $3.80^{a}$               | $4.31^{a}$               | 5.94 <sup>a</sup>        |
| S <sub>1</sub> /S <sub>0</sub> -CoIn-b | 4.96           | 4.96                  | 4.88 | 6.30 | 7.15           | <b>4.61</b> <sup>b</sup>        | <b>4.61</b> <sup>b</sup>        | -                        | -                        | -                        |
| S <sub>1</sub> /S <sub>0</sub> -CoIn-c | 5.54           | 5.55                  | 5.42 | 7.35 | 7.90           | <b>4.97</b> $^{b}$              | <b>4.97</b> <sup>b</sup>        | -                        | -                        | -                        |
| T <sub>1</sub> -Min-a                  | 1.10           | 5.71                  | 2.90 | 5.38 | 6.45           | -                               | $5.11^{c}$                      | <b>3.17</b> <sup>c</sup> | 5.04 <sup>c</sup>        | -                        |
| T <sub>1</sub> -Min-b                  | 3.25           | 3.47                  | 3.10 | 3.70 | 5.30           | $2.99^{c}$                      | $3.77^{c}$                      | $3.52^{c}$               | 4.45 <sup>c</sup>        | -                        |
| T <sub>2</sub> -Min                    | 0.45           | 5.71                  | 3.64 | 4.61 | 6.41           | -                               | -                               | -                        | -                        | -                        |
| $S_0/T_1$ -STC                         | 3.11           | 3.46                  | 3.11 | 3.70 | 5.30           | -                               | -                               | -                        | -                        | -                        |
| $S_1/T_2$ -STC                         | 3.35           | 3.59                  | 3.39 | 3.59 | 5.71           | -                               | -                               | -                        | -                        | -                        |

<sup>a</sup> CASPT2(8/7)/6-31G<sup>\*1</sup> <sup>b</sup> CASPT2(10/8)/6-311G<sup>\*2</sup> <sup>c</sup> BHLYP/MRCI/TZVPP+R<sup>3</sup>

# 2 Quantum chemical calculations of thiophene CAS(10/9)

**Table S2** Calculated excitation energies (eV) for the most relevant singlet and triplet states of thiophene at different triplet minimum and STC structures. Energies were calculated using CASSCF(10/9)/6-31G\*. All energies are relative to the ground state minimum energy. The energies of the optimized states are given in bold.

| CASSCF(10/9)/6-31G*   |                |                       | CASP           | CASPT2(10/9)/6-31G* |                |                | BHLYI                 | BHLYP/MRCI/TZVPP+R <sup>3</sup> |      |                |                |                       |                |                |                |
|-----------------------|----------------|-----------------------|----------------|---------------------|----------------|----------------|-----------------------|---------------------------------|------|----------------|----------------|-----------------------|----------------|----------------|----------------|
| Structure             | S <sub>0</sub> | <b>S</b> <sub>1</sub> | T <sub>1</sub> | T <sub>2</sub>      | T <sub>3</sub> | S <sub>0</sub> | <b>S</b> <sub>1</sub> | T <sub>1</sub>                  | T2   | T <sub>3</sub> | S <sub>0</sub> | <b>S</b> <sub>1</sub> | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> |
| T <sub>1</sub> -Min-a | 1.14           | 5.95                  | 3.09           | 5.52                | 6.37           | 1.24           | 5.68                  | 3.15                            | 5.19 | 5.96           | -              | 5.11                  | 3.17           | 5.04           | -              |
| T <sub>1</sub> -Min-b | 3.35           | 3.54                  | 3.10           | 3.83                | 5.34           | 3.27           | 4.11                  | 3.63                            | 4.51 | 5.59           | 2.99           | 3.77                  | 3.52           | 4.45           | -              |
| T <sub>2</sub> -Min   | 0.42           | 5.71                  | 3.69           | 4.68                | 6.47           | 0.53           | 5.45                  | 3.80                            | 4.63 | 6.26           | -              | -                     | -              | -              | -              |
| $S_0/T_1$ -STC        | 3.12           | 3.54                  | 3.12           | 3.82                | 5.32           | 3.58           | 4.076                 | 3.68                            | 4.33 | 5.63           | -              | -                     | -              | -              | -              |
| $S_1/T_2$ -STC        | 3.50           | 3.72                  | 3.49           | 3.72                | 5.74           | 4.14           | 4.42                  | 4.18                            | 4.39 | 6.11           | -              | -                     | -              | -              | -              |

**Table S3** Calculated excitation energies (eV) for the most relevant singlet and triplet states of all optimized ground state minima. The optimized geometries and energies were obtained using CASSCF(10/9)/6-31G<sup>\*</sup>. The electronic ground state at the S<sub>0</sub>-Min geometry has been chosen as the common origin.

| Structure                       | S <sub>0</sub> | S <sub>1</sub> | T <sub>1</sub> | T <sub>2</sub> | T <sub>3</sub> |
|---------------------------------|----------------|----------------|----------------|----------------|----------------|
| thiophene (S <sub>0</sub> -Min) | 0.00           | 6.18           | 3.78           | 5.06           | 6.25           |
| cyclopropene                    | 2.59           | 5.15           | 4.98           | 5.92           | 7.13           |
| cyclobutene                     | 1.46           | 8.32           | 5.06           | 7.32           | 7.32           |

**Table S4** Spin-orbit coupling (SOC) constants (cm<sup>-1</sup>) between selected singlet and triplet states at different important geometries. SOC strength can be considered as the length of the spin-orbit-coupling vector.<sup>1,4</sup> Its components corresponds to the spin-orbit coupling matrix elements calculated by an efficient method using the Breit-Pauli-spin-orbit operator<sup>5</sup> implemented in Molpro program<sup>6,7</sup> in combination with the CASSCF(10/9)/6-31G\* level of theory.

| SOC       | S <sub>0</sub> -Min | S <sub>1</sub> -Min-a | S <sub>1</sub> -Min-b | S <sub>1</sub> /S <sub>0</sub> -CoIn-a | T <sub>1</sub> -Min-a | T <sub>1</sub> -Min-b | S <sub>0</sub> /T <sub>1</sub> -STC | S <sub>1</sub> /T <sub>2</sub> -STC |
|-----------|---------------------|-----------------------|-----------------------|----------------------------------------|-----------------------|-----------------------|-------------------------------------|-------------------------------------|
| $S_0/T_1$ | 0.62                | 3.64                  | 115.58                | 39.48                                  | 9.57                  | 104.99                | 106.19                              | 122.08                              |
| $S_0/T_2$ | 0.03                | 13.17                 | 2.06                  | 103.13                                 | 6.38                  | 2.19                  | 3.35                                | 0.23                                |
| $S_0/T_3$ | 58.51               | 24.39                 | 56.18                 | 19.64                                  | 8.26                  | 68.02                 | 66.50                               | 50.08                               |
| $S_1/T_1$ | 0.52                | 10.95                 | 0.08                  | 100.43                                 | 0.58                  | 0.16                  | 0.20                                | 0.08                                |
| $S_1/T_2$ | 0.01                | 0.27                  | 118.43                | 40.55                                  | 0.59                  | 109.90                | 110.19                              | 125.40                              |
| $S_1/T_3$ | 20.90               | 11.83                 | 0.14                  | 49.95                                  | 2.29                  | 0.20                  | 0.17                                | 0.14                                |

# 3 Excited state dynamics of thiophene



Fig. S2 Percentage of the 100 CAS(8/7)-ST trajectories which have reached at least a given simulation time.

**Table S5** Distribution of the CAS(10/9)-ST,CAS(10/9)-S and CAS(8/7)-ST trajectories according to the observed type of dynamics, the final populated state as well as the final geometry. All percentages are given with respect to the total number of analyzed trajectories. Trajectories that only show vibrational dynamics in the S<sub>1</sub> state without any participation of other states are counted as vibrational dynamics.

|                        | CAS(10/9)-ST | CAS(10/9)-S | CAS(8/7)-ST |
|------------------------|--------------|-------------|-------------|
| non-adiabatic dynamics | 83.3         | 83.2        | 81.0        |
| vibrational dynamics   | 16.7         | 16.8        | 19.0        |
| final state (%)        |              |             |             |
| S <sub>0</sub>         | 31.8         | 75.8        | 39.0        |
| S <sub>1</sub>         | 22.2         | 24.2        | 19.0        |
| T <sub>1</sub>         | 43.9         | -           | 39.0        |
| T <sub>2</sub>         | 2.0          | -           | 2.0         |
| T <sub>3</sub>         | 0.0          | -           | 1.0         |
| final geometry(%)      |              |             |             |
| thiophene              | 41.4         | 54.7        | 49.0        |
| open-ring              | 53.5         | 25.3        | 48.0        |
| cyclopropene           | 5.1          | 16.8        | 3.0         |
| cyclobutene            | 0.0          | 3.2         | 0.0         |



Fig. S3 Definition of the collective variables  $\Phi_{SCCC}$  (blue) and  $\Phi_{CCCC}$  (red) shown for the S<sub>0</sub>-Min geometry. Both dihedral angles were redefined in the range between 0° and 90°.



**Fig. S4** Location of the initial geometries and the geometries where surface hops from the  $S_1$  state to the  $S_0$  state occurred depending on the averaged CS distance and dihedral angles  $\Phi_{SCCC}$  (top) and  $\Phi_{CCCC}$  (bottom). Only trajectories form the CAS(10/9)-S dynamics simulation set are shown. The initial geometries are represented in blue, while the  $S_1/S_0$  hopping geometries are marked in red. Both dihedral angles were redefined in the range between 0° and 90°. Additionally important CASSCF(10/9)/6-31G\* optimized geometries are represented in black.



**Fig. S5** Location of the initial geometries and the geometries where surface hops from the  $S_1$  state to the  $S_0$  state occurred depending on the averaged CS distance and dihedral angles  $\Phi_{SCCC}$  (top) and  $\Phi_{CCCC}$  (bottom). Only trajectories form the CAS(8/7)-ST dynamics simulation set are shown. The initial geometries are represented in blue, while the  $S_1/S_0$  hopping geometries are marked in red. Both dihedral angles were redefined in the range between 0° and 90°. Additionally important CASSCF(8/7)/6-31G\* optimized geometries are represented in black.



**Fig. S6** Time evolution of the average populations of the considered excited states for the CAS(8/7)-ST dynamics simulations. The ground and the four lowest excited states are displayed in color. The fitting function used is  $a \cdot exp(-t/\tau_{fast}) + b \cdot exp(-t/\tau_{slow})$  ( $a = 0.479 \pm 0.043$  and  $b = 0.508 \pm 0.043$ ).

# 4 Optimized geometries of thiophene

# S<sub>0</sub> Minimum (S<sub>0</sub>-Min)

SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | 0.013205  | -1.252181 | 0.000100  |
|---|-----------|-----------|-----------|
| С | 1.266005  | -0.716728 | -0.000017 |
| С | 1.266020  | 0.716704  | -0.000023 |
| С | 0.013209  | 1.252175  | 0.000098  |
| S | -1.237390 | 0.000047  | 0.000124  |
| Н | -0.262646 | -2.286529 | 0.000148  |
| Н | 2.158385  | -1.312937 | -0.000088 |
| Н | 2.158397  | 1.312919  | -0.000113 |
| Н | -0.262614 | 2.286529  | 0.000162  |
|   |           |           |           |

#### CASPT2(10/9)/6-31G\* optimized

| C | 0.003488  | -1 220320 | 0.000104  |
|---|-----------|-----------|-----------|
| 6 | 0.003488  | -1.239320 | 0.000104  |
| C | 1.272904  | -0.714985 | -0.000032 |
| С | 1.272915  | 0.714974  | -0.000035 |
| С | 0.003508  | 1.239329  | 0.000102  |
| S | -1.206340 | 0.000013  | -0.000042 |
| Н | -0.286870 | -2.280961 | 0.000268  |
| Н | 2.169890  | -1.324154 | -0.000118 |
| Н | 2.169911  | 1.324129  | -0.000129 |
| Н | -0.286834 | 2.280974  | 0.000273  |

# SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | 0.015861  | -1.262315 | 0.000154  |
|---|-----------|-----------|-----------|
| С | 1.265955  | -0.719944 | -0.000010 |
| С | 1.260649  | 0.715022  | 0.000039  |
| С | 0.004454  | 1.246147  | 0.000072  |
| S | -1.225349 | 0.031314  | 0.000298  |
| Н | -0.260403 | -2.296666 | 0.000058  |
| Н | 2.161506  | -1.311444 | -0.000197 |
| Η | 2.151017  | 1.314426  | 0.000023  |
| Н | -0.261119 | 2.283460  | -0.000045 |

#### S<sub>1</sub> Minimum a (S<sub>1</sub>-Min-a)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.368247 | 2.269233 | -0.483790 |
|---|-----------|----------|-----------|
| С | -1.667507 | 1.112520 | 0.079958  |
| С | -0.225354 | 1.227010 | 0.014629  |
| С | 0.230925  | 2.475289 | -0.602194 |
| S | -1.171957 | 3.586881 | -0.697438 |
| Н | 1.191734  | 2.914004 | -0.416864 |
| Н | -3.365306 | 2.552766 | -0.209072 |
| Н | -2.179875 | 0.271124 | 0.499788  |
| Н | 0.448745  | 0.478358 | 0.377718  |

# CASPT2(10/9)/6-31G\* optimized

| С | -2.365424 | 2.234333 | -0.543891 |
|---|-----------|----------|-----------|
| С | -1.666741 | 1.163869 | 0.077708  |
| С | -0.234408 | 1.277315 | 0.012206  |
| С | 0.228144  | 2.439744 | -0.662514 |
| S | -1.156968 | 3.546405 | -0.440181 |
| Н | 1.210164  | 2.876146 | -0.514314 |
| Н | -3.386271 | 2.512100 | -0.304125 |
| Н | -2.172299 | 0.315304 | 0.528581  |
| Н | 0.436962  | 0.521970 | 0.409265  |

| С | -2.367239 | 2.270528 | -0.465767 |
|---|-----------|----------|-----------|
| С | -1.670076 | 1.125757 | 0.145863  |
| С | -0.227486 | 1.234560 | 0.052597  |
| С | 0.221172  | 2.486694 | -0.590386 |
| S | -1.155818 | 3.546355 | -0.811097 |
| Н | 1.167422  | 2.944076 | -0.372826 |
| Н | -3.348317 | 2.591709 | -0.173425 |
| Н | -2.178546 | 0.231092 | 0.442672  |
| Н | 0.452047  | 0.456415 | 0.335102  |

# S<sub>1</sub> transition state (S<sub>1</sub>-TS)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.401222 | 2.007129 | -0.522510 |
|---|-----------|----------|-----------|
| С | -1.646890 | 0.948659 | 0.079641  |
| С | -0.225652 | 1.143581 | -0.064726 |
| С | 0.159733  | 2.467726 | -0.507584 |
| S | -1.217249 | 3.521678 | -0.666757 |
| Н | 1.155476  | 2.847227 | -0.542537 |
| Н | -3.414786 | 2.240660 | -0.253946 |
| Н | -2.046552 | 0.228134 | 0.768351  |
| Н | 0.504150  | 0.433455 | 0.268985  |

# CASPT2(10/9)/6-31G\* optimized

| С | -2.394864 | 2.016703 | -0.525206 |
|---|-----------|----------|-----------|
| С | -1.631489 | 1.033599 | 0.172398  |
| С | -0.207259 | 1.190806 | 0.001419  |
| С | 0.176412  | 2.402590 | -0.624952 |
| S | -1.262823 | 3.412875 | -0.607578 |
| Н | 1.146029  | 2.881320 | -0.521900 |
| Н | -3.422699 | 2.291039 | -0.292906 |
| Н | -2.057106 | 0.188632 | 0.708659  |
| Н | 0.520805  | 0.420670 | 0.248982  |
|   |           |          |           |

# SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | -2.421442 | 1.987604 | -0.529950 |
|---|-----------|----------|-----------|
| С | -1.649183 | 0.948926 | 0.074999  |
| С | -0.227942 | 1.148376 | -0.073509 |
| С | 0.155278  | 2.469644 | -0.522391 |
| S | -1.182845 | 3.503150 | -0.724749 |
| Н | 1.149343  | 2.862060 | -0.478227 |
| Н | -3.413310 | 2.248962 | -0.203608 |
| Н | -2.050279 | 0.232240 | 0.766279  |
| Н | 0.507388  | 0.437286 | 0.250072  |

# S<sub>1</sub> Minimum b (S<sub>1</sub>-Min-b)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| C | -2.793069 | 1.261016  | -0.056022 |
|---|-----------|-----------|-----------|
| С | -1.633005 | 0.669431  | 0.223167  |
| С | -0.271779 | 1.169422  | -0.052255 |
| С | 0.136647  | 2.331945  | -0.646736 |
| S | -0.889999 | 3.598954  | -1.270298 |
| Н | 1.195620  | 2.489976  | -0.744450 |
| Н | -3.805764 | 0.955464  | 0.115412  |
| Н | -1.666488 | -0.294008 | 0.710497  |
| Н | 0.516383  | 0.509257  | 0.268155  |

#### CASPT2(10/9)/6-31G\* optimized

| С | -2.739905 | 1.296114  | -0.074820 |
|---|-----------|-----------|-----------|
| С | -1.609923 | 0.655375  | 0.229971  |
| С | -0.255332 | 1.141897  | -0.038702 |
| С | 0.104894  | 2.332008  | -0.646294 |
| S | -0.978281 | 3.512430  | -1.224833 |
| Н | 1.169257  | 2.523767  | -0.761152 |
| Н | -3.787590 | 1.059757  | 0.062260  |
| Н | -1.671256 | -0.319208 | 0.723572  |
| Н | 0.556682  | 0.489317  | 0.277468  |

| С | -2.798557 | 1.259364  | -0.055000 |
|---|-----------|-----------|-----------|
| С | -1.634762 | 0.672946  | 0.221385  |
| С | -0.273820 | 1.175682  | -0.055358 |
| С | 0.134927  | 2.334166  | -0.647831 |
| S | -0.875142 | 3.590425  | -1.266342 |
| Η | 1.195109  | 2.486924  | -0.742865 |
| Н | -3.808837 | 0.947447  | 0.119587  |
| Η | -1.664611 | -0.290672 | 0.708609  |
| Н | 0.514239  | 0.515175  | 0.265284  |

# T<sub>1</sub> Minimum a (T<sub>1</sub>-Min-a)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.342175 | 2.287577 | -0.414784 |
|---|-----------|----------|-----------|
| С | -1.620359 | 1.104853 | 0.064189  |
| С | -0.271853 | 1.210981 | 0.001570  |
| С | 0.209312  | 2.489252 | -0.532735 |
| S | -1.184244 | 3.538916 | -1.052460 |
| Н | 1.120714  | 2.959443 | -0.217698 |
| Н | -3.285401 | 2.610048 | -0.018324 |
| Н | -2.146518 | 0.242239 | 0.425891  |
| Н | 0.413681  | 0.443879 | 0.307086  |

# CASPT2(10/9)/6-31G\* optimized

| C<br>C | -2.317895<br>-1.622927 | 2.301319<br>1.094699 | -0.404216<br>0.053173 |
|--------|------------------------|----------------------|-----------------------|
| С      | -0.268740              | 1.201447             | -0.009479             |
| С      | 0.184059               | 2.499204             | -0.519352             |
| S      | -1.181823              | 3.456574             | -1.142218             |
| Н      | 1.069221               | 3.009620             | -0.153062             |
| Η      | -3.236615              | 2.668394             | 0.042232              |
| Η      | -2.166092              | 0.225472             | 0.408036              |
| Н      | 0.433971               | 0.430457             | 0.287620              |

# SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | -2.332442 | 2.292415 | -0.407702 |
|---|-----------|----------|-----------|
| С | -1.617892 | 1.111235 | 0.075835  |
| С | -0.267973 | 1.199991 | -0.016352 |
| С | 0.206629  | 2.491791 | -0.556315 |
| S | -1.166626 | 3.509057 | -1.071154 |
| Н | 1.079788  | 2.979893 | -0.163525 |
| Н | -3.282081 | 2.616317 | -0.029209 |
| Н | -2.145379 | 0.257153 | 0.456083  |
| Н | 0.419135  | 0.429334 | 0.275074  |

# T<sub>1</sub> Minimum b (T<sub>1</sub>-Min-b)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.768283 | 1.291852  | -0.072107 |
|---|-----------|-----------|-----------|
| С | -1.603686 | 0.663900  | 0.225507  |
| С | -0.283639 | 1.141561  | -0.038011 |
| С | 0.107717  | 2.344188  | -0.652457 |
| S | -0.907384 | 3.563072  | -1.251750 |
| Н | 1.167838  | 2.501652  | -0.749884 |
| Н | -3.781156 | 0.985610  | 0.099687  |
| Н | -1.662847 | -0.297629 | 0.712439  |
| Н | 0.519985  | 0.497252  | 0.274047  |

#### CASPT2(10/9)/6-31G\* optimized

| -2.671060 | 1.366697                                                                                                       | -0.111690                                                                                                                                                                                                                                                    |
|-----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -1.573513 | 0.643152                                                                                                       | 0.235551                                                                                                                                                                                                                                                     |
| -0.248688 | 1.097413                                                                                                       | -0.016346                                                                                                                                                                                                                                                    |
| 0.061970  | 2.321009                                                                                                       | -0.640038                                                                                                                                                                                                                                                    |
| -1.070998 | 3.430045                                                                                                       | -1.181556                                                                                                                                                                                                                                                    |
| 1.116350  | 2.554585                                                                                                       | -0.775856                                                                                                                                                                                                                                                    |
| -3.723752 | 1.140714                                                                                                       | 0.020243                                                                                                                                                                                                                                                     |
| -1.683420 | -0.326654                                                                                                      | 0.727581                                                                                                                                                                                                                                                     |
| 0.581658  | 0.464496                                                                                                       | 0.289582                                                                                                                                                                                                                                                     |
|           | -2.671060<br>-1.573513<br>-0.248688<br>0.061970<br>-1.070998<br>1.116350<br>-3.723752<br>-1.683420<br>0.581658 | -2.671060     1.366697       -1.573513     0.643152       -0.248688     1.097413       0.061970     2.321009       -1.070998     3.430045       1.116350     2.554585       -3.723752     1.140714       -1.683420     -0.326654       0.581658     0.464496 |

| С | -2.775153 | 1.286231  | -0.069139 |
|---|-----------|-----------|-----------|
| С | -1.609207 | 0.667418  | 0.223816  |
| С | -0.284228 | 1.151203  | -0.042871 |
| С | 0.108508  | 2.346234  | -0.653503 |
| S | -0.891434 | 3.556020  | -1.248457 |
| Η | 1.170244  | 2.497188  | -0.747680 |
| Н | -3.786689 | 0.976550  | 0.104365  |
| Η | -1.661443 | -0.294562 | 0.710846  |
| Н | 0.517948  | 0.505175  | 0.270093  |

# T<sub>2</sub> Minimum (T<sub>2</sub>-Min)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.356781 | 2.172954 | -0.151519 |
|---|-----------|----------|-----------|
| С | -1.647228 | 0.992474 | 0.202656  |
| С | -0.166633 | 1.149673 | 0.010833  |
| С | 0.162099  | 2.402578 | -0.576398 |
| S | -1.278845 | 3.445726 | -0.814828 |
| Н | 1.140012  | 2.820653 | -0.687185 |
| Н | -3.416672 | 2.277817 | -0.246751 |
| Н | -2.123668 | 0.037786 | 0.305852  |
| Н | 0.554724  | 0.538587 | 0.516257  |

# CASPT2(10/9)/6-31G\* optimized

| С | -0.044499 | 0.066366  | 1.753763  |
|---|-----------|-----------|-----------|
| С | 1.284754  | -0.013747 | 2.220546  |
| С | 2.266273  | 0.384170  | 1.208933  |
| С | 1.670025  | 0.761404  | -0.012968 |
| S | 0.000606  | 0.170527  | -0.013592 |
| Η | -0.912804 | -0.382278 | 2.216808  |
| Η | 1.550258  | -0.297477 | 3.232259  |
| Η | 3.333319  | 0.424368  | 1.394368  |
| Н | 2.174566  | 0.866623  | -0.963801 |

# SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | -2.350154 | 2.172401 | -0.156380 |
|---|-----------|----------|-----------|
| C | -1.650202 | 0.990049 | 0.220607  |
| C | -0.166515 | 1.144943 | 0.010391  |
| С | 0.148716  | 2.404706 | -0.581230 |
| S | -1.264808 | 3.428180 | -0.824178 |
| Н | 1.127382  | 2.822812 | -0.687627 |
| Н | -3.410371 | 2.292169 | -0.227824 |
| Н | -2.128406 | 0.031548 | 0.277539  |
| Н | 0.561366  | 0.551440 | 0.527619  |

# $S_1/S_0$ conical intersection a ( $S_1/S_0$ -CoIn-a)

SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | 0.687641  | 1.054422  | 0.002396  |
|---|-----------|-----------|-----------|
| C | -0.688606 | 1.055840  | 0.001948  |
| С | -1.687388 | -0.039790 | -0.000488 |
| С | -1.499970 | -1.357272 | -0.001118 |
| S | 1.736047  | -0.325002 | 0.000356  |
| Н | 1.158478  | 2.021314  | 0.004045  |
| Н | -1.137508 | 2.035209  | 0.003255  |
| Н | -2.710043 | 0.308955  | -0.001756 |
| Н | -2.206291 | -2.163472 | -0.002609 |

| 0.666673  | 1.040594                                                                                                       | 0.002287                                                                                                                                                                                                                                                        |
|-----------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -0.707876 | 1.076256                                                                                                       | 0.001726                                                                                                                                                                                                                                                        |
| -1.694506 | -0.025377                                                                                                      | -0.000284                                                                                                                                                                                                                                                       |
| -1.471061 | -1.314826                                                                                                      | -0.001543                                                                                                                                                                                                                                                       |
| 1.675520  | -0.370224                                                                                                      | 0.000916                                                                                                                                                                                                                                                        |
| 1.175363  | 1.988107                                                                                                       | 0.003783                                                                                                                                                                                                                                                        |
| -1.145145 | 2.059979                                                                                                       | 0.002827                                                                                                                                                                                                                                                        |
| -2 724927 | 0.301589                                                                                                       | -0.000707                                                                                                                                                                                                                                                       |
| -2.724927 | 0.301589                                                                                                       | -0.000707                                                                                                                                                                                                                                                       |
| -2.121681 | -2.165896                                                                                                      | -0.002976                                                                                                                                                                                                                                                       |
|           | 0.666673<br>-0.707876<br>-1.694506<br>-1.471061<br>1.675520<br>1.175363<br>-1.145145<br>-2.724927<br>-2.121681 | 0.666673     1.040594       -0.707876     1.076256       -1.694506     -0.025377       -1.471061     -1.314826       1.675520     -0.370224       1.175363     1.988107       -1.145145     2.059979       -2.724927     0.301589       -2.121681     -2.165896 |

### S<sub>1</sub>/S<sub>0</sub> conical intersection b (S<sub>1</sub>/S<sub>0</sub>-CoIn-b)

SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.412909 | 2.340219 | -0.167328 |
|---|-----------|----------|-----------|
| C | -1.624774 | 1.073898 | 0.092575  |
| С | -0.289591 | 1.148420 | -0.046613 |
| С | 0.109469  | 2.476532 | -0.558888 |
| S | -1.017326 | 3.280499 | -1.517293 |
| Н | 1.039147  | 2.943782 | -0.284181 |
| Н | -2.124522 | 3.006821 | 0.649704  |
| Н | -2.149060 | 0.179405 | 0.377353  |
| Н | 0.426138  | 0.361892 | 0.108476  |

#### SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | -2.423473 | 2.331097 | -0.158278 |
|---|-----------|----------|-----------|
| С | -1.624615 | 1.074959 | 0.102265  |
| С | -0.292092 | 1.150114 | -0.054097 |
| С | 0.106458  | 2.481703 | -0.569968 |
| S | -0.983571 | 3.278745 | -1.524722 |
| Η | 1.031731  | 2.944808 | -0.271507 |
| Н | -2.136692 | 3.010180 | 0.649109  |
| Η | -2.144340 | 0.178725 | 0.390538  |
| Н | 0.423168  | 0.361132 | 0.090465  |

#### $S_1/S_0$ conical intersection c ( $S_1/S_0$ -CoIn-c)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.049702 | 1.798399 | -1.012073 |
|---|-----------|----------|-----------|
| С | -1.785966 | 0.965353 | 0.144055  |
| С | -0.416978 | 1.104251 | -0.092065 |
| С | 0.044912  | 2.395026 | -0.603990 |
| S | -1.464612 | 3.475926 | -0.847795 |
| Н | 0.705071  | 2.399491 | -1.453232 |
| Н | -2.369469 | 1.427460 | -1.971477 |
| Н | -2.248154 | 0.011846 | 0.299521  |
| Н | 0.286523  | 0.288874 | -0.051079 |

#### SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | -2.047800 | 1.804470 | -1.005979 |
|---|-----------|----------|-----------|
| С | -1.796641 | 0.979536 | 0.164200  |
| С | -0.425167 | 1.112289 | -0.092832 |
| С | 0.049854  | 2.411534 | -0.599002 |
| S | -1.468224 | 3.447883 | -0.851629 |
| Н | 0.713103  | 2.404323 | -1.446704 |
| Н | -2.339819 | 1.408582 | -1.964910 |
| Н | -2.245446 | 0.015972 | 0.301682  |
| Н | 0.261764  | 0.282038 | -0.092960 |

# $S_0/T_1$ singlet-triplet minimum-energy crossing (S\_0/T\_1-STC)

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | -2.729673 | 1.315001  | -0.084510 |
|---|-----------|-----------|-----------|
| С | -1.592446 | 0.655221  | 0.229728  |
| С | -0.263502 | 1.124968  | -0.029975 |
| С | 0.096012  | 2.325415  | -0.642780 |
| S | -0.981905 | 3.515167  | -1.226168 |
| Η | 1.146767  | 2.523436  | -0.760593 |
| Н | -3.757807 | 1.051982  | 0.065683  |
| Η | -1.673063 | -0.304733 | 0.716256  |
| Н | 0.544160  | 0.485004  | 0.279828  |

| С | -2.748899 | 1.301932  | -0.077564 |
|---|-----------|-----------|-----------|
| C | -1.601374 | 0.661034  | 0.226931  |
| С | -0.270134 | 1.139478  | -0.037197 |
| С | 0.100175  | 2.333011  | -0.646688 |
| S | -0.942052 | 3.524470  | -1.231567 |
| Н | 1.155718  | 2.512560  | -0.755242 |
| Н | -3.771433 | 1.022316  | 0.080927  |
| Н | -1.668487 | -0.299971 | 0.713755  |
| Н | 0.535028  | 0.496631  | 0.274115  |

# $S_1/T_2$ singlet-triplet minimum-energy crossing ( $S_1/T_2$ -STC)

SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| C<br>C | -2.785771<br>-1 617712 | 1.247035<br>0.642865 | -0.049268<br>0.236447 |
|--------|------------------------|----------------------|-----------------------|
| Č      | -0.276965              | 1.134191             | -0.034457             |
| С      | 0.073331               | 2.277288             | -0.618144             |
| S      | -0.773861              | 3.706256             | -1.326197             |
| Н      | 1.113609               | 2.549304             | -0.773158             |
| Н      | -3.802768              | 0.954140             | 0.115890              |
| Н      | -1.675331              | -0.319013            | 0.723597              |
| Н      | 0.534011               | 0.499394             | 0.272759              |

# SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| C<br>C | -2.788537<br>-1.620473 | 1.248394<br>0.647373 | -0.049901<br>0.234211 |
|--------|------------------------|----------------------|-----------------------|
| С      | -0.278140              | 1.143530             | -0.039157             |
| С      | 0.079213               | 2.289515             | -0.624418             |
| S      | -0.781259              | 3.676563             | -1.311068             |
| Η      | 1.124197               | 2.539487             | -0.768372             |
| Η      | -3.805238              | 0.955045             | 0.115479              |
| Η      | -1.671939              | -0.314745            | 0.721369              |
| Н      | 0.530719               | 0.506299             | 0.269326              |

# S<sub>0</sub> minimum cyclopropene derivate

# SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| .376735 |
|---------|
| .515098 |
| .878610 |
| .614583 |
| .360375 |
| .509443 |
| .847765 |
| .439243 |
| .205791 |
|         |

| C | -0.318981 | -1.355271 | -1.374696 |
|---|-----------|-----------|-----------|
| С | 0.965214  | -1.279202 | -1.513750 |
| С | 0.311720  | -0.086646 | -0.876108 |
| С | 0.459705  | 0.144553  | 0.616123  |
| S | 0.452578  | 1.596543  | 1.346718  |
| Н | -1.244042 | -1.870551 | -1.505055 |
| Н | 1.894827  | -1.684751 | -1.844802 |
| Н | 0.196808  | 0.827173  | -1.438644 |
| Н | 0.576831  | -0.753506 | 1.204071  |

#### S<sub>0</sub> minimum cyclobutene derivate

SA(2S+3T)-CASSCF(10/9)/6-31G\* optimized

| С | 0.411404  | -0.763656 | 0.079073  |
|---|-----------|-----------|-----------|
| С | -0.297594 | -0.657553 | -1.309102 |
| С | -0.068033 | 0.635086  | -1.401958 |
| С | 0.668341  | 0.683145  | -0.024855 |
| S | -0.499470 | 0.242413  | 1.392583  |
| Н | 1.111626  | -1.513771 | 0.393374  |
| Н | -0.843009 | -1.367907 | -1.898924 |
| Н | -0.351411 | 1.400273  | -2.097773 |
| Н | 1.590692  | 1.183805  | 0.199594  |

#### SA(2S+3T)-CASSCF(8/7)/6-31G\* optimized

| С | 0.424867  | -0.789369 | 0.052714  |
|---|-----------|-----------|-----------|
| С | -0.268917 | -0.688896 | -1.324668 |
| С | -0.055217 | 0.644282  | -1.376536 |
| С | 0.647829  | 0.669541  | -0.026671 |
| S | -0.476736 | 0.322650  | 1.337642  |
| Н | 1.096936  | -1.536459 | 0.424633  |
| Η | -0.834681 | -1.383720 | -1.913514 |
| Н | -0.383769 | 1.430486  | -2.026864 |
| Н | 1.572234  | 1.173319  | 0.185276  |
|   |           |           |           |

# References

1 P. Kölle, T. Schnappinger and R. de Vivie-Riedle, Phys. Chem. Chem. Phys., 2016, 18, 7903–7915.

- 2 M. Stenrup, Chem. Phys., 2012, 397, 18-25.
- 3 S. Salzmann, M. Kleinschmidt, J. Tatchen, R. Weinkauf and C. M. Marian, Phys. Chem. Chem. Phys., 2008, 10, 380–392.
- 4 M. Merchán, L. Serrano-Andrés, M. A. Robb and L. Blancafort, J. Am. Chem. Soc., 2005, 127, 1820–1825.
- 5 A. Berning, M. Schweizer, H.-J. Werner, P. J. Knowles and P. Palmieri, Mol. Phys., 2000, 98, 1823-1833.
- 6 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby and M. Schütz, WIREs Comput Mol Sci, 2012, 2, 242-253.
- 7 H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson and M. Wang, *MOLPRO, version 2012.1, a package of ab initio programs*, 2012, see http://www.molpro.net/.