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Supporting information

1 Linear fuel gradient

To model a fuel gradient linearly increasing in the 2 direction, we substitute
Cr = Dprgcos 0+ Cp into equations 11 and 12 in the main paper. Breaking 7
into its Cartesian components, but retaining the spherical angles as integration
variables for the sake of symmetry, we get:
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For the & and § components, the only azimuthally dependent terms are cos pdy
and sin ¢dp, both of which disappear when integrated from 0 to 2w. Thus, the
total velocity is directed solely along the Z direction, as expected. Performing
the integration gives us the result:
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We first notice that the argument of the logarithm is negative semidefinite
where CroKr+1 < DpKprg. There is a singularity where the equality holds.
This is because at some point, as the radius r( of the particle increases, a portion
of the particle’s surface will be in a negative concentration region. This occurs
because the concentration gradient is linear and therefore the range of concen-
tration is not bounded by zero. Since a negative concentration is unphysical,
we ignore situations where CroKpr +1 < DpKprg. We next show that
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for all CroKr +1> DrpKpry. To do this, we note that Cry, K, Dp, and 7
are all positive constants, so we can write the relation:
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where s > 1/2. This allows us to rewrite the condition in equation 3 above as
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for all s > 1/2. We can see that this condition is always true by noting that the
logarithm can be rewritten as an inverse hyperbolic cotangent and expanded in
a series:
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for all s > 1/2. Thus, the condition in equation 3 above is fulfilled and velocity
is constant and negative along the 2 direction.

2 Linear foulant gradient

Letting Cr = Drrgcosf + Cry and performing the integration in equation 12
in the main paper:
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Letting Ko =1+ KpCFr + K7Crg, we arrive at:
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and this expression is clearly constant and positive along the Z direction. We
note briefly the singularity at Ky = KpDpry which arises for the same reason
as in the case of linear fuel gradient; that is, a portion of the particle’s surface
lies in an unphysical “negative concentration” region. To avoid this problem, we
only consider the case where Kqg > KpD7prg.

Expanding the logarithmic term in rg gives:
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demonstrating that the particle velocity is proportional to its radius.

3 Point source foulant gradient

The relevant integral is:
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where A = 1 4+ KpCgr, B = K7(Cq, g is the particle radius, and rp is the
distance of the center of the particle from the point source. The solution to this
integral has a closed form expression given by:
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It is not at all obvious from this equation that the velocity is nonnegative
for all values of ry. To examine the general behavior of the function, we pull a
factor of 1/3A%rZ inside the bracket in equation 11 above to get the following
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A dimensional analysis of the velocity surface integral shows that B/A has
units of distance. This means that B/A and r( are related by a unitless number,
o. We evaluate the above equation for B/A = org and we let ro/r7 = p, noting
that the domain of pis 0 < p < 1 and the domain of ¢ is 0 < ¢ < co. We obtain
the following expression after dividing by 2072 and converting the logarithms
to inverse hyperbolic cotangents:
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We show that f(o,p) > 0 everywhere, which is equivalent to showing that
velocity is always positive along the 2 axis, in the direction of the source. To do
so, we first substitute © = o + 1/p, noting that the domain of z is 1 < z < oo,

and we rewrite the inverse hyperbolic cotangents as a series to get:
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Through straightforward, albeit tedious, algebraic manipulation, we can recast
this equation in the following form:
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Since 0 < p < 1, both terms in the sum are positive. Since z > 1, the series
converges absolutely and the difference between the terms (and therefore the
total function f(z,p)) will be positive if:
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or equivalently:
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Since 0 < p < 1, this expression is always true. Therefore, the velocity is
always positive along the Z axis in the direction of the foulant source. The final
expression for velocity is:
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The admittedly exhaustive analysis of the velocity presented above is neces-
sary in light of two facts: a) the point source gradient is likely to be useful in a
realistic modeling scenario, and b) the solution to this problem given by equa-
tions 11-13 above is extremely numerically unstable for large o. The instability
comes from the fact that a calculation of f(o, p) from equation 13 is dominated
by the difference:
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From the series expression in equation 15 above, we see that this difference
ends up being O(1/0?), and such a small difference of large numbers leads to a
significant amount of rounding error at large values of o.

Equation 15 above gives us one more important insight: the leading term of
the series is proportional to 1/r2.



