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1 Linear fuel gradient

To model a fuel gradient linearly increasing in the ẑ direction, we substitute
CF = DF r0 cos θ+CF,0 into equations 11 and 12 in the main paper. Breaking r̂
into its Cartesian components, but retaining the spherical angles as integration
variables for the sake of symmetry, we get:

~vtot = −akPKF r
2
0

[
x̂

ˆ 2π

0

ˆ π

0

sin2 θ cosϕ(DF r0 cos θ + CF,0)dθdϕ

1 +KF (DF r0 cos θ + CF,0)

+ŷ

ˆ 2π

0

ˆ π

0

sin2 θ sinϕ(DF r0 cos θ + CF,0)dθdϕ

1 +KF (DF r0 cos θ + CF,0)

+ẑ

ˆ 2π

0

ˆ π

0

sin θ cos θ(DF r0 cos θ + CF,0)dθdϕ

1 +KF (DF r0 cos θ + CF,0)

] (1)

For the x̂ and ŷ components, the only azimuthally dependent terms are cosϕdϕ
and sinϕdϕ, both of which disappear when integrated from 0 to 2π. Thus, the
total velocity is directed solely along the ẑ direction, as expected. Performing
the integration gives us the result:

~vtot = ẑ
2πakP
D2
FK

2
F

[
(CF,0KF + 1) ln

(
CF,0KF + 1−DFKF r0
CF,0KF + 1 +DFKF r0

)
+ 2DFKF r0

] (2)
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We �rst notice that the argument of the logarithm is negative semide�nite
where CF,0KF + 1 ≤ DFKF r0. There is a singularity where the equality holds.
This is because at some point, as the radius r0 of the particle increases, a portion
of the particle's surface will be in a negative concentration region. This occurs
because the concentration gradient is linear and therefore the range of concen-
tration is not bounded by zero. Since a negative concentration is unphysical,
we ignore situations where CF,0KF + 1 ≤ DFKF r0. We next show that

(CF,0KF + 1) ln

(
CF,0KF + 1−DFKF r0
CF,0KF + 1 +DFKF r0

)
+ 2DFKF r0 < 0 (3)

for all CF,0KF + 1 > DFKF r0. To do this, we note that CF,0, KF , DF , and r0
are all positive constants, so we can write the relation:

CF,0KF + 1 = s(2DFKF r0) (4)

where s > 1/2. This allows us to rewrite the condition in equation 3 above as

ln

(
2s+ 1

2s− 1

)
>

1

s
(5)

for all s > 1/2. We can see that this condition is always true by noting that the
logarithm can be rewritten as an inverse hyperbolic cotangent and expanded in
a series:

ln

(
2s+ 1

2s− 1

)
= 2 coth−1(2s) =

1

s
+

2

3(2s)3
+

2

5(2s)5
+ · · · > 1

s
(6)

for all s > 1/2. Thus, the condition in equation 3 above is ful�lled and velocity
is constant and negative along the ẑ direction.

2 Linear foulant gradient

Letting CT = DT r0 cos θ + CT,0 and performing the integration in equation 12
in the main paper:

~vtot = −akPKFCF r
2
0

[
x̂

ˆ 2π

0

ˆ π

0

sin2 θ cosϕdθdϕ

1 +KFCF +KT (DT r0 cos θ + CT0)

+ŷ

ˆ 2π

0

ˆ π

0

sin2 θ sinϕdθdϕ

1 +KFCF +KT (DT r0 cos θ + CT0)

+ẑ

ˆ 2π

0

ˆ π

0

sin θ cos θdθdϕ

1 +KFCF +KT (DT r0 cos θ + CT0)

] (7)

Letting K0 ≡ 1 +KFCF +KTCT0, we arrive at:

~vtot = ẑ
2πakPKFCF

K2
TD

2
T

K0[ln (K0 +KTDT r0)− ln (K0 −KTDT r0)] (8)
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and this expression is clearly constant and positive along the ẑ direction. We
note brie�y the singularity at K0 = KTDT r0 which arises for the same reason
as in the case of linear fuel gradient; that is, a portion of the particle's surface
lies in an unphysical �negative concentration� region. To avoid this problem, we
only consider the case where K0 > KTDT r0.

Expanding the logarithmic term in r0 gives:

ln

(
K0 +KTDT r0
K0 −KTDT r0

)
=

2KTDT r0
K0

+
2K3

TD
3
T r

3
0

3K3
0

+ · · · (9)

demonstrating that the particle velocity is proportional to its radius.

3 Point source foulant gradient

The relevant integral is:

~vtot = −ẑ2πr20akPKFCF

ˆ π

0

sin θ cos θdθ

A+

(
B√

r2T−2rT r0 cos θ+r20

) (10)

where A = 1 + KFCF , B = KTC1, r0 is the particle radius, and rT is the
distance of the center of the particle from the point source. The solution to this
integral has a closed form expression given by:

~vtot = ẑ
πakPKFCF

3A5r2T

[
4A3Br30 + 6A2B2rT r0 − 6AB3r0

+ (3B4 − 3A2B2(r2T + r20)) ln

(
B +A(rT + r0)

B +A(rT − r0)

)] (11)

It is not at all obvious from this equation that the velocity is nonnegative
for all values of rT . To examine the general behavior of the function, we pull a
factor of 1/3A4r2T inside the bracket in equation 11 above to get the following
expression:

4r0
3

(
B

A

)(
r0
rT

)2

+ 2

(
B

A

)2(
r0
rT

)
− 2

r0

(
B

A

)3(
r0
rT

)2

+
1

r20

(
B

A

)4(
r0
rT

)2

ln

[ B
A + rT + r0
B
A + rT − r0

]
−
(
B

A

)2

ln

[ B
A + rT + r0
B
A + rT − r0

]
−
(
B

A

)2(
r0
rT

)2

ln

[ B
A + rT + r0
B
A + rT − r0

]
(12)
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A dimensional analysis of the velocity surface integral shows that B/A has
units of distance. This means that B/A and r0 are related by a unitless number,
σ. We evaluate the above equation for B/A = σr0 and we let r0/rT = ρ, noting
that the domain of ρ is 0 < ρ < 1 and the domain of σ is 0 < σ <∞. We obtain
the following expression after dividing by 2σr20 and converting the logarithms
to inverse hyperbolic cotangents:

f(σ, ρ) =
2

3
ρ2 + σρ+ σ3ρ2 coth−1

(
σ +

1

ρ

)
− σ2ρ2 − (1 + ρ2)σ coth−1

(
σ +

1

ρ

) (13)

We show that f(σ, ρ) > 0 everywhere, which is equivalent to showing that
velocity is always positive along the ẑ axis, in the direction of the source. To do
so, we �rst substitute x = σ + 1/ρ, noting that the domain of x is 1 < x <∞,
and we rewrite the inverse hyperbolic cotangents as a series to get:

f(x, ρ) =
2

3
ρ2 + 3xρ− 2 + x2ρ2

+ (x3ρ2 + 2x+ ρ− 3x2ρ− xρ2)
∞∑
n=0

1

(2n+ 1)x2n+1

(14)

Through straightforward, albeit tedious, algebraic manipulation, we can recast
this equation in the following form:

f(x, ρ) =

∞∑
n=0

[
4n+ 10− 2ρ2

(2n+ 3)(2n+ 5)x2n+2

− 4nρ+ 4ρ

(2n+ 3)(2n+ 5)x2n+3

] (15)

Since 0 < ρ < 1, both terms in the sum are positive. Since x > 1, the series
converges absolutely and the di�erence between the terms (and therefore the
total function f(x, ρ)) will be positive if:

4n+ 10− 2ρ2 > 4nρ+ 4ρ (16)

or equivalently:

4n(1− ρ) + 2(5− 2ρ− ρ2) > 0 (17)

Since 0 < ρ < 1, this expression is always true. Therefore, the velocity is
always positive along the ẑ axis in the direction of the foulant source. The �nal
expression for velocity is:

~vtot = ẑ
2πr0akPKFCFB

A2
f(x, ρ) (18)
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The admittedly exhaustive analysis of the velocity presented above is neces-
sary in light of two facts: a) the point source gradient is likely to be useful in a
realistic modeling scenario, and b) the solution to this problem given by equa-
tions 11-13 above is extremely numerically unstable for large σ. The instability
comes from the fact that a calculation of f(σ, ρ) from equation 13 is dominated
by the di�erence:

σ3ρ2 coth−1
(
σ +

1

ρ

)
− σ2ρ2 ≈ (σ + ε)2 − σ2 (19)

From the series expression in equation 15 above, we see that this di�erence
ends up being O(1/σ2), and such a small di�erence of large numbers leads to a
signi�cant amount of rounding error at large values of σ.

Equation 15 above gives us one more important insight: the leading term of
the series is proportional to 1/r2T .
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