Surface fouling as a mechanism for chemotaxis in isotropic catalytic swimmers

Keith E. Whitener, Jr.
July 19, 2017

Chemistry Division, U. S. Naval Research Laboratory, Washington, D. C., USA, 20375

Supporting information

1 Linear fuel gradient

To model a fuel gradient linearly increasing in the \hat{z} direction, we substitute $C_{F}=D_{F} r_{0} \cos \theta+C_{F, 0}$ into equations 11 and 12 in the main paper. Breaking \hat{r} into its Cartesian components, but retaining the spherical angles as integration variables for the sake of symmetry, we get:

$$
\begin{align*}
\vec{v}_{\text {tot }}=-a k_{P} K_{F} r_{0}^{2} & {\left[\hat{x} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin ^{2} \theta \cos \varphi\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right) d \theta d \varphi}{1+K_{F}\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right)}\right.} \\
& +\hat{y} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin ^{2} \theta \sin \varphi\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right) d \theta d \varphi}{1+K_{F}\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right)} \tag{1}\\
& \left.+\hat{z} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin \theta \cos \theta\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right) d \theta d \varphi}{1+K_{F}\left(D_{F} r_{0} \cos \theta+C_{F, 0}\right)}\right]
\end{align*}
$$

For the \hat{x} and \hat{y} components, the only azimuthally dependent terms are $\cos \varphi d \varphi$ and $\sin \varphi d \varphi$, both of which disappear when integrated from 0 to 2π. Thus, the total velocity is directed solely along the \hat{z} direction, as expected. Performing the integration gives us the result:

$$
\begin{align*}
\vec{v}_{t o t}=\hat{z} \frac{2 \pi a k_{P}}{D_{F}^{2} K_{F}^{2}} & {\left[\left(C_{F, 0} K_{F}+1\right) \ln \left(\frac{C_{F, 0} K_{F}+1-D_{F} K_{F} r_{0}}{C_{F, 0} K_{F}+1+D_{F} K_{F} r_{0}}\right)\right.} \\
& \left.+2 D_{F} K_{F} r_{0}\right] \tag{2}
\end{align*}
$$

We first notice that the argument of the logarithm is negative semidefinite where $C_{F, 0} K_{F}+1 \leq D_{F} K_{F} r_{0}$. There is a singularity where the equality holds. This is because at some point, as the radius r_{0} of the particle increases, a portion of the particle's surface will be in a negative concentration region. This occurs because the concentration gradient is linear and therefore the range of concentration is not bounded by zero. Since a negative concentration is unphysical, we ignore situations where $C_{F, 0} K_{F}+1 \leq D_{F} K_{F} r_{0}$. We next show that

$$
\begin{equation*}
\left(C_{F, 0} K_{F}+1\right) \ln \left(\frac{C_{F, 0} K_{F}+1-D_{F} K_{F} r_{0}}{C_{F, 0} K_{F}+1+D_{F} K_{F} r_{0}}\right)+2 D_{F} K_{F} r_{0}<0 \tag{3}
\end{equation*}
$$

for all $C_{F, 0} K_{F}+1>D_{F} K_{F} r_{0}$. To do this, we note that $C_{F, 0}, K_{F}, D_{F}$, and r_{0} are all positive constants, so we can write the relation:

$$
\begin{equation*}
C_{F, 0} K_{F}+1=s\left(2 D_{F} K_{F} r_{0}\right) \tag{4}
\end{equation*}
$$

where $s>1 / 2$. This allows us to rewrite the condition in equation 3 above as

$$
\begin{equation*}
\ln \left(\frac{2 s+1}{2 s-1}\right)>\frac{1}{s} \tag{5}
\end{equation*}
$$

for all $s>1 / 2$. We can see that this condition is always true by noting that the logarithm can be rewritten as an inverse hyperbolic cotangent and expanded in a series:

$$
\begin{equation*}
\ln \left(\frac{2 s+1}{2 s-1}\right)=2 \operatorname{coth}^{-1}(2 s)=\frac{1}{s}+\frac{2}{3(2 s)^{3}}+\frac{2}{5(2 s)^{5}}+\cdots>\frac{1}{s} \tag{6}
\end{equation*}
$$

for all $s>1 / 2$. Thus, the condition in equation 3 above is fulfilled and velocity is constant and negative along the \hat{z} direction.

2 Linear foulant gradient

Letting $C_{T}=D_{T} r_{0} \cos \theta+C_{T, 0}$ and performing the integration in equation 12 in the main paper:

$$
\begin{align*}
& \vec{v}_{t o t}=-a k_{P} K_{F} C_{F} r_{0}^{2}\left[\hat{x} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin ^{2} \theta \cos \varphi d \theta d \varphi}{1+K_{F} C_{F}+K_{T}\left(D_{T} r_{0} \cos \theta+C_{T 0}\right)}\right. \\
&+\hat{y} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin ^{2} \theta \sin \varphi d \theta d \varphi}{1+K_{F} C_{F}+K_{T}\left(D_{T} r_{0} \cos \theta+C_{T 0}\right)} \tag{7}\\
&\left.+\hat{z} \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{\sin \theta \cos \theta d \theta d \varphi}{1+K_{F} C_{F}+K_{T}\left(D_{T} r_{0} \cos \theta+C_{T 0}\right)}\right]
\end{align*}
$$

Letting $K_{0} \equiv 1+K_{F} C_{F}+K_{T} C_{T 0}$, we arrive at:

$$
\begin{equation*}
\vec{v}_{t o t}=\hat{z} \frac{2 \pi a k_{P} K_{F} C_{F}}{K_{T}^{2} D_{T}^{2}} K_{0}\left[\ln \left(K_{0}+K_{T} D_{T} r_{0}\right)-\ln \left(K_{0}-K_{T} D_{T} r_{0}\right)\right] \tag{8}
\end{equation*}
$$

and this expression is clearly constant and positive along the \hat{z} direction. We note briefly the singularity at $K_{0}=K_{T} D_{T} r_{0}$ which arises for the same reason as in the case of linear fuel gradient; that is, a portion of the particle's surface lies in an unphysical "negative concentration" region. To avoid this problem, we only consider the case where $K_{0}>K_{T} D_{T} r_{0}$.

Expanding the logarithmic term in r_{0} gives:

$$
\begin{equation*}
\ln \left(\frac{K_{0}+K_{T} D_{T} r_{0}}{K_{0}-K_{T} D_{T} r_{0}}\right)=\frac{2 K_{T} D_{T} r_{0}}{K_{0}}+\frac{2 K_{T}^{3} D_{T}^{3} r_{0}^{3}}{3 K_{0}^{3}}+\cdots \tag{9}
\end{equation*}
$$

demonstrating that the particle velocity is proportional to its radius.

3 Point source foulant gradient

The relevant integral is:

$$
\begin{equation*}
\vec{v}_{t o t}=-\hat{z} 2 \pi r_{0}^{2} a k_{P} K_{F} C_{F} \int_{0}^{\pi} \frac{\sin \theta \cos \theta d \theta}{A+\left(\frac{B}{\sqrt{r_{T}^{2}-2 r_{T} r_{0} \cos \theta+r_{0}^{2}}}\right)} \tag{10}
\end{equation*}
$$

where $A=1+K_{F} C_{F}, B=K_{T} C_{1}, r_{0}$ is the particle radius, and r_{T} is the distance of the center of the particle from the point source. The solution to this integral has a closed form expression given by:

$$
\begin{align*}
& \vec{v}_{t o t}=\hat{z} \frac{\pi a k_{P} K_{F} C_{F}}{3 A^{5} r_{T}^{2}}\left[4 A^{3} B r_{0}^{3}+6 A^{2} B^{2} r_{T} r_{0}-6 A B^{3} r_{0}\right. \\
&\left.+\left(3 B^{4}-3 A^{2} B^{2}\left(r_{T}^{2}+r_{0}^{2}\right)\right) \ln \left(\frac{B+A\left(r_{T}+r_{0}\right)}{B+A\left(r_{T}-r_{0}\right)}\right)\right] \tag{11}
\end{align*}
$$

It is not at all obvious from this equation that the velocity is nonnegative for all values of r_{T}. To examine the general behavior of the function, we pull a factor of $1 / 3 A^{4} r_{T}^{2}$ inside the bracket in equation 11 above to get the following expression:

$$
\begin{align*}
\frac{4 r_{0}}{3}\left(\frac{B}{A}\right)\left(\frac{r_{0}}{r_{T}}\right)^{2} & +2\left(\frac{B}{A}\right)^{2}\left(\frac{r_{0}}{r_{T}}\right)-\frac{2}{r_{0}}\left(\frac{B}{A}\right)^{3}\left(\frac{r_{0}}{r_{T}}\right)^{2} \\
& +\frac{1}{r_{0}^{2}}\left(\frac{B}{A}\right)^{4}\left(\frac{r_{0}}{r_{T}}\right)^{2} \ln \left[\frac{\frac{B}{A}+r_{T}+r_{0}}{\frac{B}{A}+r_{T}-r_{0}}\right] \\
& -\left(\frac{B}{A}\right)^{2} \ln \left[\frac{\frac{B}{A}+r_{T}+r_{0}}{\frac{B}{A}+r_{T}-r_{0}}\right] \tag{12}\\
& -\left(\frac{B}{A}\right)^{2}\left(\frac{r_{0}}{r_{T}}\right)^{2} \ln \left[\frac{\frac{B}{A}+r_{T}+r_{0}}{\frac{B}{A}+r_{T}-r_{0}}\right]
\end{align*}
$$

A dimensional analysis of the velocity surface integral shows that B / A has units of distance. This means that B / A and r_{0} are related by a unitless number, σ. We evaluate the above equation for $B / A=\sigma r_{0}$ and we let $r_{0} / r_{T}=\rho$, noting that the domain of ρ is $0<\rho<1$ and the domain of σ is $0<\sigma<\infty$. We obtain the following expression after dividing by $2 \sigma r_{0}^{2}$ and converting the logarithms to inverse hyperbolic cotangents:

$$
\begin{align*}
f(\sigma, \rho)= & \frac{2}{3} \rho^{2}+\sigma \rho+\sigma^{3} \rho^{2} \operatorname{coth}^{-1}\left(\sigma+\frac{1}{\rho}\right) \\
& -\sigma^{2} \rho^{2}-\left(1+\rho^{2}\right) \sigma \operatorname{coth}^{-1}\left(\sigma+\frac{1}{\rho}\right) \tag{13}
\end{align*}
$$

We show that $f(\sigma, \rho)>0$ everywhere, which is equivalent to showing that velocity is always positive along the \hat{z} axis, in the direction of the source. To do so, we first substitute $x=\sigma+1 / \rho$, noting that the domain of x is $1<x<\infty$, and we rewrite the inverse hyperbolic cotangents as a series to get:

$$
\begin{align*}
f(x, \rho)= & \frac{2}{3} \rho^{2}+3 x \rho-2+x^{2} \rho^{2} \\
& +\left(x^{3} \rho^{2}+2 x+\rho-3 x^{2} \rho-x \rho^{2}\right) \sum_{n=0}^{\infty} \frac{1}{(2 n+1) x^{2 n+1}} \tag{14}
\end{align*}
$$

Through straightforward, albeit tedious, algebraic manipulation, we can recast this equation in the following form:

$$
\begin{align*}
f(x, \rho)=\sum_{n=0}^{\infty} & {\left[\frac{4 n+10-2 \rho^{2}}{(2 n+3)(2 n+5) x^{2 n+2}}\right.} \tag{15}\\
& \left.-\frac{4 n \rho+4 \rho}{(2 n+3)(2 n+5) x^{2 n+3}}\right]
\end{align*}
$$

Since $0<\rho<1$, both terms in the sum are positive. Since $x>1$, the series converges absolutely and the difference between the terms (and therefore the total function $f(x, \rho)$) will be positive if:

$$
\begin{equation*}
4 n+10-2 \rho^{2}>4 n \rho+4 \rho \tag{16}
\end{equation*}
$$

or equivalently:

$$
\begin{equation*}
4 n(1-\rho)+2\left(5-2 \rho-\rho^{2}\right)>0 \tag{17}
\end{equation*}
$$

Since $0<\rho<1$, this expression is always true. Therefore, the velocity is always positive along the \hat{z} axis in the direction of the foulant source. The final expression for velocity is:

$$
\begin{equation*}
\vec{v}_{t o t}=\hat{z} \frac{2 \pi r_{0} a k_{P} K_{F} C_{F} B}{A^{2}} f(x, \rho) \tag{18}
\end{equation*}
$$

The admittedly exhaustive analysis of the velocity presented above is necessary in light of two facts: a) the point source gradient is likely to be useful in a realistic modeling scenario, and b) the solution to this problem given by equations 11-13 above is extremely numerically unstable for large σ. The instability comes from the fact that a calculation of $f(\sigma, \rho)$ from equation 13 is dominated by the difference:

$$
\begin{equation*}
\sigma^{3} \rho^{2} \operatorname{coth}^{-1}\left(\sigma+\frac{1}{\rho}\right)-\sigma^{2} \rho^{2} \approx(\sigma+\epsilon)^{2}-\sigma^{2} \tag{19}
\end{equation*}
$$

From the series expression in equation 15 above, we see that this difference ends up being $O\left(1 / \sigma^{2}\right)$, and such a small difference of large numbers leads to a significant amount of rounding error at large values of σ.

Equation 15 above gives us one more important insight: the leading term of the series is proportional to $1 / r_{T}^{2}$.

